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A B S T R A C T A biologically based phenology model is described for use in integrated pest 
management. The model predicts the proportion of insects in a population in various stages 
of development as a stochastic function of accumulated degree-days. The model is based on 
a logistic probability distribution with mean and variance changing through time. Maximum 
likelihood parameters of the estimates are easily computed with nonlinear regression pack­
ages. Appropriate statistical tests are presented for comparing models. Results should be 
useful to researchers and biological modelers who describe insect or plant phenology. 

P R E D I C T I N G T H E O C C U R R E N C E of developmental 
stages is important to insect population modeling. 
Because economic damage is often heaviest dur ing 
a certain stage, forest or agricultural losses can be 
better predicted when the onset of that stage is 
known. Factors regulating population size, such as 
predation, food l imitat ion, and weather, affect de­
velopmental stages differently. An insect popula­
tion can also respond differently to pest control 
methods applied to different stages of the popu­
lation's life cycle. 

Information on developing field populations is 
often variable. A sample may contain insects in 
several developmental stages, and the relative pro­
portions of each stage may change when new sam­
ples are drawn. Predicting variability through time 
is an important component of modeling because it 
allows calculation of the economic risk associated 
w i t h various developmental stages. 

Incorporating variability into insect population 
models is crucial but difficult. The stochastic vari ­
ation should be included in a way that has biolog­
ical meaning. Unfortunately, adding stochastic ef­
fects rapidly increases the complexity of the model, 
making it harder to use. Methods for estimating 
parameters and testing the model must be clear 
and easy to perform for the model to be practical. 
Stochastic modeling is often misunderstood; in ­
vestigators bui ld expensive models containing sto­
chastic information but discard it and in the end 
concentrate on the mean behavior of the system. 
Also, modelers sometimes use probability distri­
butions only as convenient and flexible curves (de­
void of any probabilistic content) to be directly fit 
to data sets. 

Osawa et al. (1983) recently presented a sto­
chastic model for describing vegetative bud de­
velopment in balsam fir, Abies halsamea (L.) M i l l . 
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We believe their approach, wi th the modifications 
described here, could be widely applied to insect 
phenology. Their approach can be used to predict 
the proportions of an insect cohort in various de­
velopmental stages as a function of accumulated 
degree-days (DD) . 

This paper describes some improvements and 
extensions to the bud phenology model of Osawa 
et al. (1983), and adapts the model for use in ento­
mology. First, we describe the model and show 
how changing the original underlying probability 
distribution simplifies computation. Then we de­
scribe how to obtain estimates of the model pa­
rameters for a given data set on insect develop­
ment. We show how maximum likelihood estimates 
of the parameters are easily computed using non­
linear regression packages. Finally, we present 
methods for conducting formal statistical hypoth­
esis tests about the model. An appendix contains 
an example of a computer program for obtaining 
the parameter estimates, using the Statistical Anal­
ysis System (SAS; SAS Institute 1982). The pro­
gram includes a data set on the development of a 
population of western spruce bud w o r m {Choris-
toneura occidentalis Freeman). This paper p r i ­
mari ly documents for entomologists the use of the 
model and the associated statistical inferences. 

Model Description 

The model assumes that the development of a 
given insect is a stochastic poxiess consisting of 
accumulated small increments of development 
time. The process S(() is defined as the amount of 
development t ime an insect has accumulated by 
actual t ime t. S{t) and t should be measured in 
D D , as indicated by results wi th the western spruce 
budworm and w i t h balsam fir buds (Osawa et al. 
1983). The process is assumed to begin w i t h the 
insect in a given life stage (i.e., egg or instar) at 
t ime ( = 0. 

As the amount of development S(() increases, 
the insect passes through successive stages, w i t h 
the stages delimited by molts. Let a, = amount of 
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development in D D necessary for the insect to 
undergo the t th molt. The a, values, i = 1 , . . . , r — 
1, are signposts separating r stages: 

stage 1: 
stage 2: 

stage r - I : 
stage r: 

Sit) < a, 
a, < Sit) < 

a,_2 < Sit) < a,_^ 
a,_, < Sit). 

For the western spruce budworm data used in this 
paper (see Appendix), r = 7, representing five in -
stars, pupa, and adult. The a, values are typically 
unknown parameters and must be estimated f rom 
the data. 

The heart of the model is a probability distri­
bution for S(() that changes as t increases. One 
form, suggested by Osawa et al. (1983), is a normal 
distribution for Sit) w i t h a mean of t and a vari­
ance of <tH, where (ri is a positive constant. This 
distribution results in the l imi t if development Sit) 
up to time t is the cumulative sum of many small 
developmental increments. The distribution is 
identical to that of Brownian motion w i t h d r i f t , in 
which Sit) would be the position of a particle sus­
pended in a l iquid moving at a speed of one unit 
distance per unit t ime (Karl in & Taylor 1975). 
Strictly speaking, the Brownian motion process al­
lows S(() to decline f rom time to time, which 
clearly does not occur for accumulated insect de­
velopment. We emphasize that the normal distri­
bution is a l imi t ing approximation to an insect's 
true development. 

The random variable Sit) under the above nor­
mality assumption would have a probability den­
sity function (PDF) w i t h a mean and variance pro­
portional to time: 

fis, t) = ((r*(27r)-'Vxp[-(« - t)'/i2aH)]. (1) 

Then the probability that an insect's develop­
ment at t ime t has not exceeded s is the cumulative 
area under the PDF between —oo and s: 

Pi\Sit) < s] = 

= * 

fiu. t) du 

(2) 

Here, * (z ) is the cumulative area under a standard 
normal curve between —oo and z. 

An alternative probability distribution is easier 
to compute and gives predictions almost identical 
to the normal. I t is the logistic distribution, w i t h a 
PDF given by; 

fis,t) = e\py 

1 -I- exp (3) 

Here, b* is a positive constant. This distribution 
has a mean of t and a variance of (ir*/3)b*t (Fig. 
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Fig. 1. Logistic PDF (3) plotted for increasing val­
ues of (. Mean and variance of the distribution increase 
linearly with t. 

1). Computing is easier because the cumulative 
area under the P D F curve is a relatively simple 
function of s: 

PriSit) < s]= fiu, t) du 

= 1 / 1 + exp — (4) 

The normal integral (2), by contrast, has no simple 
form and must be evaluated through numerical 
integration or other methods. 

Our experience using the normal and logistic 
models to describe budworm data indicates that 
the differences between the two models are slight. 
The PDF curves 1 and 3 are similarly shaped, w i t h 
the logistic having slightly larger kurtosis (sharper 
peak and heavier tails). Indeed, the two models 
are used interchangeably in dose/response studies 
for probit analysis (normal) and logit analysis (lo­
gistic) (see Bishop et al. 1975). Although Osawa et 
al. (1983) originally proposed the normal model of 
phenology, we adopt the logistic model in this pa­
per because it is easier to use for analyzing data 
sets. 

At any fixed time (, the a, values divide the PDF 
into r parts (Fig. 2). The area under the curve 
between a,., and o, gives the probability that an 
insect w i l l be in stage i at t ime t. As t increases, 
the PDF moves through the a, values, and the in­
sect is more likely to be found in an advanced 
stage of development. Information for estimating 
the a, values and the value of b* can be obtained 
by taking field samples of such an insect popula­
tion at several fixed times. The expected frequen­
cies of the various stages in the population can 
then be computed and plotted through t ime (Fig. 
3), 

Several factors affecting insect phenology are 
not explicitly included in the model. First, the 
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model does not have terms for mortali ty differ­
ences among various stages. Second, the model does 
not incorporate heterogeneity in development rates 
among individual insects. Finally, the model does 
not have distributed ini t ia l conditions for repre­
senting populations not entirely in stage 1 at ( = 
0. The model was developed, however, for de­
scribing a given type of data set commonly col­
lected in the field. Results w i t h the western spruce 
budworm (Kemp et al. 1986) suggest the model 
has enough parameters to account impl i c i t ly for 
much of the variability in such data resulting f rom 
these factors. 

Parameler Estimation 

Data for this model consist of samples of insects 
taken f rom a population at fixed times ti, t^, . . . , 

The population is assumed to be a cohort of 
insects in their init ial stage of development at t ime 
/ = 0. At each time the number of insects in 
stage i, denoted x,„ is recorded. The sample size 
at time (, is then + x^, + . . . -I- x,, = n,. The 
population is considered to be an ensemble of in ­
sects developing according to the stochastic pro­
cess S{t}. The values x„, x^,, . . . , i ^ , are then as­
sumed to be a random sample f rom a mult inomial 
distribution. The mult inomial probabilities Pi , , p^p 
. . . , p,, are found using the logistic curve 3; 

P., = Pr[a,_, < S{t,) < a.] 

fiu, t,) du 

= 1 / I -!- exp -

- 1 
r / 

1 + exp — 

(5) 

a, _ , - t. 

VUt. 
For completeness, and a, are defined to be - c o 
and + C O , respectively, so that p,, + pj^ + . . . + 
P . = 1. 

This model has r unknown parameters: a^, a^, 
. . . , a,_,, and b* For large samples, max imum 
likelihood ( M L ) estimates of these parameters w i l l 
have many desirable statistical properties, includ­
ing small variances, unbiasedness, and normal dis­
tributions. The M L estimates, denoted a,, . . . , <2,_i, 
b*, are the numerical values of the parameters that 
maximize the likelihood function, L , of the data: 

L = c n n [ p . •(6) 

Here, C is a combinatorial constant ( = Tl (n,')/ 
[ ( X i , ! ) ( x 2 , ! ) . . . (x,,!)]) that does not contain the pa­
rameter values. Maximizing log L instead of L 
yields the identical estimates but is numerically 

log L = log C -t- 2 2 ^'Mi- Pi)-
(7) 

This function can be directly maximized by using 
the Nelder-Mead algorithm (see Olsson & Nelson 
1975) or by other methods. It can be maximized 
indirectly, however, using a nonlinear regression 
package. 

Jennrich & Moore (1975) showed that maximiz­
ing L (or log L ) is equivalent to performing a 
nonlinear least squares regression. The nonlinear 
regression must be "iteratively reweighted." The 
nonlinear regression uses the x,̂  values as observa­
tions on the dependent variable and the n,p,j values 
as the model to be fit. w i t h weights of (n^p,,)"' 
computed at each iteration. The resulting least 
squares estimates of a,, . . . , a,_,, and b* are the 
desired M L estimates. 

Nonlinear regression packages, such as PROC 
N L I N of SAS (SAS Institute 1982) or AR of BMDP 
(Dixon 1983), are widely available. These two 
packages are particularly convenient because they 
do not require derivatives, and their options allow 
properly scaled confidence intervals for the pa­
rameter estimates. A library function for evaluat­
ing the normal probability integral (PROBNORM) 
exists in SAS, if the normal model is desired in ­
stead of the logistic. A complete SAS program for 
fitting the logistic model to a western spruce bud­
w o r m data set is presented and discussed in the 
Appendix. 

These iterative computer packages require in i ­
tial values for the parameters. The initial values 
should be close to the final M L values, or the rou­
tines may not converge properly. Ini t ia l values can 
be guessed by observing plots of the data and by 
using biological intuit ion. A variety of initial val­
ues should be explored because the likelihood 
function (6) is a complicated surface w i t h possible 
multiple local maxima. 

Hypothesis Testing 

M L estimation makes possible two types of sta­
tistical hypothesis tests concerning this model. The 
first type, goodness-of-fit tests, allows the descrip­
tive quality of the model to be evaluated for a 
given data set. The second type, parameter com­
parison tests, is a method for comparing the fitted 
models of two separate data sets. The tests de­
scribed here are derived from the standard large-
sample statistical theory for M L estimation (see 
Rao 1973, Bishop et al. 1975). 

Coodness-of-fit Tests. The data for this model 
consist of independent samples from q multino­
mial distributions, one sample at each fixed time 
f,. The data form a two-way table w i t h r x t? cells. 
The model states that knowledge of just r param­
eter values, a,, . . ., a,. , , b*, is sufficient to compute 
the p,j values for all the cells. M L estimates of the 
p,i values under the model, denoted p,,, are found 
by evaluating^ equation 5 w i t h the M L estimates 
a'l, . . . , d , _ i , b*. A n estimate of the expected value 
for X|j in each ceil is then n^p,,. I f the model fits 
poorly, an alternate hypothesis would simply es-
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0 200 400 600 800 

3 
Fig. 2. Logistic PDF (3) plotted for seven fixed val­

ues of t. Area under the PDF between a,_, and a, gives 
expected proportion of insects in stage i at time t. Values 
of a , fle and b* used In the graph are the ML 
estimates for the western spruce budworm data set in 
the Appendix. 

timate the cell probabilities using the raw data, 
P., — 3:,,/nj, independent of any underlying com­
mon model. Denote by L„ the estimated likelihood 
under the nul l hypothesis that the model fits; that 
is, Lo is equation 6 computed using the p,, values. 
Denote by L , the estimated likelihood under the 
alternate^ hypothesis that the model does not fit; 
that is, L | is equation 6 evaluated using the p,, 
values. The ratio of_ these estimated likelihoods, 
given by f l = L Q / L , , compares the descriptive 
power of each hypothesis according to the data. 
Large values of R support the model, while small 
values of R support the hypothesis that the mode! 
does not fit ( f l w i l l always be between 0 and 1). 
From a theorem in mathematical statistics, 

V = - 2 log R (8) 

w i l l have (approximately) a distribution w i t h 
q{r — 1) — r degrees of freedom, under the null 
hypothesis that the model fits (see Bishop et al. 
1975). The null hypothesis would be rejected if V 
exceeded, say, the 95th percentile of the appro­
priate distribution. W i t h a l i t t le algebraic rear­
rangement, V (8) can be shown to be identical to 

^ = 2 2 2 x„\o^x,/{n,p,)l (9) 
, - i 1-1 

a form more convenient to compute, Also, V is 
approximately equal to the more familiar Pearson 
x" statistic in large samples: 

V = 2 2 [ I , - n,p,F/(n,P.,). (10) 
/ - I . - 1 

One possible obstacle to using V is a table w i t h 
empty or nearly empty cells. For the x̂  distribu­
tion of V to be valid, each np,^ value should be at 
least five. This is ensured by pxoling adjacent spiarse 
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Fig. 3. Expected proportions of insects in stages 1-7 
plotted as functions of (. Parameter values are the same 
as for Fig. 2. 

cells w i t h i n each fixed time unti l the expocted 
frequencies exceed five for every remaining cell. 
If the total number of remaining cells is m . the 
appropriate degrees of freedom are m - q - r. 

Parameter Comparisons. In some studies, com­
paring parameter estimates resulting f rom two 
separate data sets may be desirable. Comparisons 
can be made, for example, between estimates f rom 
two different regions or sampling p)eriods. A prop­
erty of M L estimates allows such comparisons to 
be phrased as formal statistical tests. M L estimates 
have normal distributions for large samples. 

Specifically, let 6 = [d„ . . . , d , _ i , b'^]' be the r x 
1 vector of M L parameter estimates for a popu­
lation. Let dp,, represent the partial derivative of 
p,, w i t h resp)ect to parameter number k; that is, 
dp,, — dp,i/da2, dp,, = dp„/db^, and so on. Define 
the r X r " informat ion matr ix , " F, as having its 
element in the k th row and /th column given by 

/« = 2 ( ^ , / P i M p M p > , ) - (11) 

l-l ( -1 

Also, denote by 8 the r x I vector of the true 
parameter values for the population. Then, 8 has 
(approximately) a multivariate normal distribu­
tion w i t h mean vector 8 and variance/covariance 
matrix F " ' . I n particular, each individual param­
eter estimate in 8 has a normal distribution, wi th 
a mean equal to the parameter's true value and a 
variance equal to the corresponding element on 
the main diagonal of F~'. F " ' can be estimated by 
substituting the M L parameter estimates in F, and 
inverting the matrix. 

The SAS or B M D P nonlinear regression pack­
ages have options for easily computing this esti­
mate of F-\e options (SIGSQ = 1 in SAS; 
M EANS QUAR E IS 1.0 in BMDP) set the residual 
mean square equal to one before the asymptotic 
standard deviations and correlation matrix of the 
parameters are calculated. The resulting standard 
deviations and correlations are the same obtained 
f r om the estimated information matrix. The cor-
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relation matrix, G, is G = D(I/(T,)F~'D(I/tr,), where 
D(l/a,) is a matrix (r x r ) containing reciprocals 
of the parameter standard deviations down the 
main diagonal, and zeros elsewhere. The estimate 
of F " ' can be directly obtained from the computer 
output as 

F - ' = D(5,)GD(ff,), (12) 

where C is the printed estimate of the correlation 
matrix, a, is the printed estimate of the standard 
deviation for the i t h parameter, and D{d,) is the 
diagonal matrix of those standard deviations. 

The fol lowing multivariate statistical test com­
pares the model parameters for two different pop­
ulations. Let ^1 and be the vectors of parameter 
estimates resulting f rom f i t t ing the model to two 
different data sets. Also, let F , " ' and F^"' be the 
respective estimates for the variance/covariance 
matrices. The hypotheses to be tested are Hg. 6, = 
$2 versus H,: 0, ^ 5 , , where 0, and 8^ are the vectors 
of true parameter values. Under H,,, 8, — 8^ would 
have (for large samples) a multivariate normal dis­
tr ibution w i t h mean vector 8, —8^ = 0 and vari­
ance/covariance matrix F , " ' + F^"'. Then, under 
H^, the statistic 

W ={$,- ^ , ) ' [F , - ' ^ F r ' l ^ ' ( ^ , - h) (13) 

w i l l have a distribution w i t h r degrees of free­
dom. Reject Ho if W exceeds the 100(1 - a)th 
percentile of the distribution, where a is the 
desired significance level of the test. 

Note that the sample sizes do not need to be 
equal (just large) nor do the sample times {t, val­
ues) need to match up between the two data sets. 
The latter requirement precludes a comparison of 
the two frequency tables directly using loglinear 
models, unless the sampling times were exactly 
matched. 

Individual parameters can be compared w i t h 
the univariate version of W . Let a,, be a parameter 
estimate in 9,, a^jbe the corresponding estimate in 
9,, and o-,,, a,^ be the computed estimates of the 
standard deviations (square roots of the i t h ele­
ments of the diagonals of F, and F^"', respec­
tively). The statistic W then reduces to 

W = ( d , - d , ) V ( 5 , / + *«^), (14) 
w i t h a x^ distribution having 1 df . 
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Appendix 

This appendix contains a SAS program for com­
puting M L estimates of the parameters a „ O j , , . . , 
a , _ i , and fc* in the logistic phenology model. The 
program illustrates the use of nonlinear regression 
for obtaining such estimates. The data used in the 
program, which are described in Kemp et al. 
(1986), represent the development of a western 
spruce budworm population. The seven develop­
mental stages are five instars, pupa, and adult. 
Samples were drawn at 12 different times. Thus, 
r = 7 (number of stages), and q = 12 (number of 
samples). 

I n the program, each observation contained in 
the resulting SAS data set corresponds to an i t h 
developmental stage and a j t h sample. The pro­
gram sets up the SAS data set as shown: 
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SAS variable name: N 

tt n , 1 I I I 

Sample 1 • tl " i 2 ^21 

tl r 

t2 
i 1.2 

Sample 2 • 
t. " 2 2 

t2 
r 

t. 1 

Sample q • t. 2 ^2f l 

t. r 

SAS Program to Compute ML Estimates for L o g i s t i c Phenology Model 

DATA; 

* rOHTIMIIOMS STRKAM flF OBSFRVATIONS FNTFRFO INTO SAS OATA SET; 

INPUT T N I X PP; 

CAPOS; 

58 16 1 16 58 16 2 0 58 16 3 0 58 16 A 0 
58 16 5 0 58 16 6 0 58 16 7 0 82 10 1 10 
82 10 2 0 8? 10 3 0 82 10 4 0 82 10 5 0 
82 10 6 0 82 10 7 0 107 30 1 23 107 30 2 7 

107 30 3 0 107 30 4 0 107 30 5 0 107 30 6 0 
107 30 7 0 155 47 1 3 155 47 2 44 155 47 3 0 
155 47 4 0 155 47 5 0 155 47 6 0 155 47 7 0 
237 64 1 0 237 64 2 6 237 64 3 45 237 64 4 13 
237 64 5 0 237 64 6 0 237 64 7 0 307 74 1 0 
307 74 2 2 307 74 3 9 307 74 4 48 307 74 5 15 
307 74 6 0 307 74 7 0 342 72 1 0 34? 72 2 0 
342 72 3 1 342 72 4 34 342 72 5 37 342 72 6 0 
342 72 7 n 388 104 1 0 388 104 2 0 388 104 3 1 
388 104 A 10 388 104 5 87 388 104 6 5 388 104 7 0 
442 74 1 0 442 74 2 0 44? 74 3 0 4 4 ? 74 A 7 
442 74 5 S3 44? 74 6 21 442 74 7 0 518 76 1 0 
518 76 2 0 518 76 3 0 518 76 4 0 518 76 5 10 
518 76 6 65 518 76 7 1 609 40 1 0 609 40 2 0 
609 40 3 0 609 40 4 0 609 40 5 0 600 AO 6 14 
609 40 7 26 685 42 1 0 685 42 2 0 685 42 3 0 
685 40 4 0 685 42 5 0 685 42 6 0 685 42 7 42 

* INVOKE NOHLINEAR REGRESSION PROCEDURE; 

PROC NLIN NOHALVE SIGSO.I; 

* PROVIDE INITIAL PARAMETER VALUES; 
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PARMS Al=150 A?=?30 A3=?R0 A4=330 

A5=440 A6=580 BB=3; 

* COMPUTE PROPORTION OF POPULATION EXPECTED IN ITH DEVELOPMENTAL 

* STAGE AT JTH SAMPLE; 

IF Ul THEN P=l/(l+FXP(-fAl-T)/SORT(BB*T))); 

ELSE IF 1=2 

THEN P=l/fl+FXP(-(A2-T)/S0RT(BB*T)))-l/(l+EXP(-fAl-T)/SQRTfBB*T))); 

ELSE IF 1=3 

THEN P=l/fl+EXP(-fA3-T)/S0RT(BR*T)))-!/(1+EXP(-(A2-T)/SQRT(BB*T))); 

ELSE IF 1=4 

THEN P=l/(l+EXP(-(A4-T)/S0RTfBR*T)))-l/(l+EXP(-(A3-T)/SQRTfBB*T))); 

ELSE IE I=S 

THEN P=l/fl+EXP(-(AS-T)/SQPT(BB*T)))-l/(l+EXP(-(A4-T)/SQRT(RB*T))); 

ELSE IF 1=6 

THEN P=1/(1+EXP(-(A6-T)/S0RT(BB*T)))-1/(1+EXP(-(A5-T)/SQRT(BB*T))); 

ELSE IF 1=7 

THEN P=1/(1+EXP((A6-T)/S0RT(BB*T))); 

* USED TO PREVENT NUMERICAL OVERLOAD IN _WEIGHT_ STATEMENT 

* WHEN P IS VERY CLOSE TO ZERO; 

IF P <0.00000001 THEN P=0.00000001; 

* SPECIFY THE NONLINEAR REGRESSION MODEL; 

MODEL X=N*P; 

* COMPUTE WEIGHT FOR EACH OBSERVATION AT EACH ITERATION; 

WEIGHT =1/(N*P); 
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