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Estimation of a population trend from a time series of abundance data is an important task in ecology, yet such
estimation remains logistically and conceptually challenging in practice. First, the extent to which unequal intervals in the
time series, due to missing observations or irregular sampling, compromise trend estimation is not well-known.
Furthermore, the predominant trend estimation method (loglinear regression of abundance data against time) ignores the
possibility of process noise, while an alternative method (the ‘diffusion approximation’) ignores observation error in the
abundance data. State-space models that account for both process noise and observation error exist but have been little
used. We study an adaptation of the exponential growth state-space (EGSS) model for use with missing data in the time
series, and we compare its trend estimation to the status quo methods. The EGSS model provides superior estimates of
trend across wide ranges of time series length and sources of variation. The performance of the EGSS model even with
half of the counts in the time series missing implies that trend estimates may be improved by diverting effort away from
annual monitoring and towards increasing time series length or improving precision of the abundance estimates for years
that data are collected.

Estimating a population’s rate of change, or trend, is a
fundamental challenge in basic and applied ecology.
Population trend can be defined as the average change in
log-abundance per unit of time (Dennis et al. 1991, Link
and Sauer 1998). Although trend can be estimated from age
or stage-specific vital rates, it is commonly estimated from
abundance data collected over time via enumeration,
abundance estimates or abundance indices (Morris et al.
2002, Marsh and Trenham 2008). Ecological time series
models, derived from abundance data over time for single
populations, can incorporate additional factors such as
environmental covariates (Dennis and Otten 2000),
observer-related covariates (Link and Sauer 1997), and
density dependence (James et al. 1996, Brook and
Bradshaw 2006, Dennis et al. 2006). However, data to
support such analyses are often not readily available (e.g.
covariates are mostly absent in the nearly 5000 population
time series maintained by the Global Population Dynamics
Database; see Fagan et al. (2001), Inchausti and Halley
(2001) and Brook et al. (2006)). Therefore, exponential
growth models lacking covariates are most commonly used
for trend estimation in applications (Sabo et al. 2004).

Ecologists interested in estimating simple exponential
trend from abundance data typically face four primary
challenges. First, the lengths of time series are short, often
consisting of only 5�10 time steps (e.g. years) and seldom
more than 30. Second, time series often have unequal
time intervals, arising from observations missing due to

funding, logistical or personnel constraints. Third, variance
in the abundance data arises from an often unknown
combination of environmental noise and observation or
estimation error in the abundance data themselves. Finally,
different statistical methods exist to estimate trend for
time series abundance data, with little guidance as to
relative performance.

At present two methods that accommodate unequal
intervals in the time series are most commonly used to
estimate trend (Table 1). The oldest, and predominant,
method is a log-linear regression of counts against time,
where the slope of the regression gives the population trend
(Caughley 1977, Gerrodette 1987, Eberhardt and Simmons
1992). We refer to this as the exponential growth
observation error (EGOE) model, because it tacitly assumes
that variability in the data arises purely as sampling or
‘observation error’, with the population itself governed by
deterministic exponential growth (Supplementary material
Appendix 1).

A second method for estimating exponential trend
parameters assumes that the population is censused (i.e.
no observation error), and that variability in abundances is
entirely due to growth rate fluctuations caused by environ-
mental variability or ‘process noise’ (Dennis et al. 1991,
Lande et al. 2003). The method takes abundance on the
logarithmic scale to be described by a Brownian motion
diffusion process with a constant drift rate. We refer to this
as the exponential growth process noise (EGPN) model.
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Interestingly, EGPN estimates have been used widely to
estimate the trend parameter for population viability
analysis (PVA) but rarely for simply describing the trend
of populations (Table 1).

A recently developed third method for estimating trend
uses a stochastic ‘state-space’ exponential growth model that
assumes both observation error and environmental process
noise (Holmes 2001, Lindley 2003, Staples et al. 2004,
Dennis et al. 2006). We term this the exponential growth
state space (EGSS) model. Estimation is based on the
insight that the EGSS model can be written as a linear
mixed model (Staples et al. 2004), thereby making
calculations possible through software for analysis of
variance with mixed random and fixed effects. The
EGOE and EGPN models occur as limiting special cases
when the corresponding variance parameters approach zero.
More recently, Staudenmayer and Buonaccorsi (2006) scale
the observations in the linear mixed model framework to
allow for unequally spaced time intervals. That the EGSS
model can accommodate missing data is not well known in
ecological practice.

In this paper we explain how to obtain maximum
likelihood (ML) and restricted maximum likelihood
(REML) parameter estimates for the EGSS model based
on the scaled observations of Staudenmayer and Buonaccorsi
(2006). We then use computer simulations to compare the
performance of EGOE, EGPN and EGSS approaches for
estimating population trend. We document the statistical
properties of point and interval estimates of the trend
parameter when each of the three models are applied to data
generated by stochastic exponential growth with varying
time series lengths, numbers of missing values in the time
series, and ratios of observation error versus process noise. In
light of our findings of substantial robustness of trend
estimates under the EGSS model, we provide recommenda-
tions for future biomonitoring study design and analysis.

Methods

We use lower case to denote data as well as constants, and
upper case to denote the stochastic process (random
variable) that generates data. So, we write n(0), n(t1), . . .,
n(tq) for a recorded time series of population abundances at

times 0 (�t0), t1, . . ., tq, and N(t) for a random population
abundance at time t with some associated probability
distribution. ‘Abundance’ refers to numbers, biomass, or
density, and may be determined from a complete census, an
estimate, or an index that reliably and proportionally tracks
population fluctuations.

The three models we consider are based on familiar
deterministic exponential growth:

n(t)�n0l
t (1)

Here n(t) is population abundance at time t, with n0�n(0),
and l is a positive constant indicating an increasing (l�1)
or decreasing (lB1) population. On the logarithmic scale:

ln nt� ln n0�(ln l)t (2)

A general stochastic version of the exponential growth
model with both process noise and observation error takes
the form of a state space model with an unobserved
population component and a component representing the
observed or estimated abundance values. Let X(t) be the
unobserved log-abundance of the population (now assumed
to be a stochastic process) at time t and Y(t) be the
estimated or observed value of X(t). We write the EGSS
model as:

dX(t)�(ln l)dt�dB(t) (3)

Y(ti)�X(ti)�Fi (4)

Here dB(t)�normal(0, s2dt), and Fi�normal(0, t2).
The term dB(t) is a random perturbation representing
the process noise (environmental variability), and Fi

represents the observation error, assumed to have no
auto- or cross-correlations. The quantity m�lnl is the
expected change of X(t) in one time unit; it is our trend
parameter (see Supplementary material Appendix 1 for
more details). The model defines X(t) as a Brownian
motion process with drift rate m and represents a general-
ization of the earlier EGSS version to continuous time.
Equation 3 provides a simple recipe for simulating an
increment of a population trajectory over a small time
interval dt as an increment of deterministic exponential
growth on the log scale perturbed by a normal random
quantity; an entire population trajectory would be con-
structed by accumulating such increments. Sampling times

Table 1. Examples of typical applications of EGOE (exponential growth observation error), EGPN (exponential growth process noise), and
EGSS (exponential growth state space) methods to estimate trend parameters for animal populations.

Application Taxa Citation

EGOE (log-linear approach)
Determine contemporary declines koala Phillips 2000
Assess declines common frog Meyer et al. 1998
Determine population growth rate wildebeest, buffalo, zebra Grange et al. 2004
Estimate growth rate for an endangered species wallaby Fisher et al. 2000
Estimate population growth rate ibex Largo et al. 2008

EGPN (diffusion approximation approach)
Predict extinction probabilities 35 rare breeding bird species Gaston and Nicholls 1995
Predict extinction probabilities mount Graham red squirrel Buenau and Gerber 2004
Predict extinction probabilities cape mountain zebra Watson et al. 2005

EGSS (state-space approach)
Estimate population growth and extinction parameters can. sea otter and Yellowstone grizzly bear Lindley 2003
Determine how spatial correlations affect PVA chinook salmon Hinrichsen 2009
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t0 (�0), t1, . . ., tq are not necessarily equally spaced.
Special cases of the EGSS model are EGOE (s2�0) and
EGPN (t2�0). Additional properties of the EGOE,
EGPN, and EGSS models, along with details of ML
and REML parameter estimation, are given in Supple-
mentary material Appendix 1.

For each set of conditions evaluated, we simulated 5000
replicate time series from the EGSS model with specified
m (from �0.2 to 0.2) and variance parameters (from 0 to
0.25 for both s2�process noise and t2�observation
error). The duration of the simulated time series ranged
from 5 to 50, bracketing from well below the minimum
duration deemed acceptable for estimating population trend
to approximately the longest time series currently available
(Bence 1995, Holmes 2004).

The log-population abundances X(t), (t�1, 2, . . .) were
generated with the discrete time autoregressive model:

X(t)�X(t�1)�m�Et (5)

where Et�normal(0, s2). The autoregressive model has
statistical properties identical to the continuous time model
(Eq. 3) evaluated at discrete times. Observation errors were
then added to each X(t):

Y(t)�X(t)�Ft (6)

where Ft�normal(0, t2). The simulated population
values were calculated as exp(Y(t)). Also, if a simulated
population decreased to 52, it was deleted and simulated
again in order to limit estimation to populations that
do not become extinct before the requisite number of
observations were obtained. The size of X(0) was always
ln(1000), and the initial value of Y(t) was randomly
chosen by Y(0)�ln(1000)�F0. (Results were insensitive
to changes in X(0); Supplementary material Appendix 2).
To explore the effects of missing observations in the
time series, we removed randomly a fixed number of
the abundance data from each simulated time series
(the first and last observations were not allowed to be
removed to keep the length of the survey constant).
Comparing the estimates of trend from the same time
series under complete and missing data isolates the effect
of missing observations from other effects such as process
stochasticity.

To each simulated time series, we fitted the EGOE and
EGPN models using ML and the EGSS model using
REML. We created box plots of point estimates of
m across the 5000 replicates for each of the three methods
(EGOE, EGPN, and EGSS). We also explored the
coverage of the interval estimators of m by plotting the
percent of 5000 replicates whose confidence intervals
(CI) actually included m. (See Supplementary material
Appendix 1 for details on confidence interval construc-
tion). Because it may be equally problematic, in an applied
context, for a CI of m̂ to either over- or under- include
the true m, we use a 50% CI to provide symmetry for
assessing over and underestimation. For example, a model
reaching 40% coverage can be interpreted as equally biased
to another model with 60% coverage. By contrast, a more
traditional 90% or 95% CI would obscure comparisons
because of the asymmetry of over- and under-inclusion.
All simulations and computations were performed with

R 2.8.1 for Windows (code available in Supplementary
material Appendix 1).

Results

The same general patterns were found for all combinations
of input trend parameters (positive, zero, or negative
m, with a range of process noise and observation error).
Therefore, we only present detailed results for one
scenario, a small true population decline with compara-
tively large process and sampling variance (m��0.02,
s2�0.01, t2�0.01). (Results of other combinations of
input parameters can be found in Supplementary material
Appendix 2).

All three models provided relatively unbiased estimates
of m regardless of the ratio of process noise (s2) to
observation error (t2) (Fig. 1A). Additionally, estimates of
m were robust to time series lengths from 5 to 50 years (Fig.
1B) and the number of missing observations in the time
series (Fig. 1C). Although the additional parameter in the
EGSS model might lead to an expectation of higher
variability in the estimate of m compared to the EGOE
and EGPN models, we found no evidence for this under
any conditions. For all 3 methods, variability increased with
the ratio of process variation to observation error (Fig. 1A)
and as the time series length decreased (Fig. 1B), but was
mostly unaffected by missing observations (Fig. 1C).

While performance of the three models was good relative
to bias in the estimates of m, there were substantial
differences in confidence interval coverage (Fig. 2).
Confidence intervals constructed using the EGOE model
were good (i.e. m was contained in about 50% of the
intervals) only when process noise was absent or small in
relation to observation error (s2/t2 ratio near 0; Fig. 2A).
However, as the s2/t2 ratio increased, confidence interval
coverage became B50% indicating that the intervals were
too narrow. The coverage was improved by decreasing
the time series length (Fig. 2B). Similarly, coverage
also improved as the time series became less complete
(i.e. more missing values; Fig. 2C). Improved coverage
for smaller samples often happens when estimates are
statistically inconsistent (i.e. converge to the wrong values
asymptotically).

Confidence intervals constructed using the EGPN
model had excellent coverage when process noise over-
whelmed observation error (e.g. s2/t2��5; Fig. 2A).
However, when process noise was minimal relative to
observation error (s2/t2B�1), confidence intervals
constructed using the EGPN model became too wide
(��50%). As with the EGOE model, coverage improved
(slightly) with decreased time series length (Fig. 2B) and
more missing data (Fig. 2C).

Empirical coverage of confidence intervals constructed
using the EGSS model tended to be less than 50% (CIs
too narrow) but only slightly so as coverage rarely strayed
more than 10% from the nominal value (Fig. 2). Coverage
was consistently better than EGOE and EGPN models
across all combinations of process noise and observation
error, time series lengths, and number of missing observa-
tions. Unlike EGOE and EGPN, coverage improved
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with increasing time series length (Fig. 2B) and decreased
number of missing values (Fig. 2C).

Discussion

The status quo for monitoring simple exponential trend in
wild populations is to analyze the time series data with
methods that assume either no process noise (EGOE
model) or no observation error (EGPN), and to strive to
collect abundance data each year. We recommend two
fundamental shifts to this paradigm. First, we encourage the
use of the EGSS model, extended to accommodate missing
values (Supplementary material Appendix 1). Secondly, we
suggest that researchers need not be reluctant to skip
sampling in some years if the saved sampling effort
could be focused on improving the remaining abundance
estimates or on increasing time series length.

For a wide range of realistic conditions we found EGSS
to be a superior estimator, performing well even with short
time series, missing data, and a range of process and
sampling variance. The most popular method for estimating
exponential trend (i.e. EGOE) performed the worst of the
three methods evaluated, with strongly biased small con-
fidence intervals when process noise became even 1/10 as
large as observation error. From an applied perspective this
means that using EGOE will impart false confidence in
what could be a qualitatively wrong trend, inferring for

example that a population is declining when it is actually
increasing or stationary. This underscores the fact that the
exponential growth model underlying EGOE is determi-
nistic, assuming that none of the variance arises from
environmental noise, so CIs will only attain the claimed
coverage when process variance is lacking. Also disturbing
was our finding that increasing the time series length or
ensuring that no abundances are missing from the time
series did not improve coverage of the EGOE estimate of
trend; in fact the coverage only got worse.

The EGPN, commonly called the diffusion approxima-
tion, has received critical evaluation as an estimator of
exponential trend parameters in PVA predictions based on
abundance data (Holmes and Fagan 2002, Elderd et al.
2003, Holmes 2004). We find that the EGPN performs
reasonably well in estimating trend as long as the ratio of
process to observation variance is greater than 5. However,
because the EGPN model assumes that all variation in the
time series comes from process noise (Supplementary
material Appendix 1), the presence of substantial observa-
tion error leads to confidence intervals of trend that are too
wide. The resulting management inferences would too often
include 0 and thereby miss actual increases or decreases.
Like EGOE, coverage of trend estimates with EGPN
becomes worse (although only slightly) with longer or
more complete time series.

In most cases a time series will be influenced by both
process and observation error. The EGSS both estimates

Figure 1. Estimation of trend (m) using three estimators of exponential growth from time series of abundance data: EGOE (exponential
growth with observation error), EGPN (exponential growth with process noise), EGSS (exponential growth state space). The horizontal
line shows the true m��0.02 (error bars extend to the most extreme data point in 5000 simulations which is no more than 1.5 times the
interquartile range from the box). Performance is evaluated under varying conditions: (A) ratio of process (s2) to sampling (t2) variance
ranging from 0.01 (trivial process variance) to 100 (trivial sampling variance); (B) time series length from 5 to 50 time steps; (C) for a
time series of 30 time steps, missing abundance data ranging from none to 25 missing out of 30. Results here are typical of a range of
values of m, s2, t2 and time series lengths (Supplementary material Appendix 2).
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and incorporates both forms of variation. If observation
error predominates, EGSS performs only slightly worse
than EGOE, and if process noise predominates, EGSS is
only slightly worse than EGPN. Except for those rare cases
where an investigator knew for certain that a time series was
entirely dominated by either process noise or observation
error, the EGSS should be used to estimate trend. Further-
more, coverage of the CI for trend under the EGSS model
improves with time series length. It also improves with
fewer missing observations in the time series.

The EGSS model, as adapted for missing data,
performed well for trend estimation even with approxi-
mately half of the abundance estimates missing from the
time series. This implies that in some cases the collection of
data every time step (e.g. year) may be less important than
the quality of abundance estimates and length of time series.
In other words, exponential trend estimation may well be
improved if the money spent on data collection each
consecutive year could instead be used to collect fewer,
better estimates of abundance over the same total time
duration, or to extend the time duration of the monitoring
farther. Such a strategy is in stark contrast to many
monitoring programs in management agencies, which strive
to collect data every year to keep the time series complete,
even if the data are poor (Hauser et al. 2006).

As for the chronic question of ‘How much data is
enough?’, the minimum data requirements for trend
parameter estimation are four data points for the EGSS
and three for the EGPN and EGOE. Our simulations
showed that the EGSS performed well (i.e. unbiased
estimate of m and proper confidence intervals) with as
short a time series as 10 and approximately half of the

abundances missing; this implies that a 10-year time series
with five data points could be considered a minimum for
trend estimation using EGSS under the conditions we
considered, and assuming that the density independent
model is adequate. However, a better approach to deter-
mining sample design would calculate confidence intervals
for m for data simulated with trial parameter values under
different time series lengths.

We emphasize that we were by no means comprehensive
in our assessment of various ways that exponential popula-
tion growth rate or trend might be estimated from count
data (Pradel 1996, Clark and Bjornstad 2004, Ryding et al.
2007). For example, much more detailed trend analyses
derived from log-linear models exist (Thomas and Martin
1996, Link and Sauer 1998, Bart et al. 2003, Sæther and
Engen 2004), and for linear state-space models in the
presence of autocorrelated environmental variables in
density dependent populations (Lindén and Knape 2009).
Our goal was to focus on the simple case where a series of
abundance data without covariates for a single location are
assessed for estimating trend and calculating an associated
CI. This scenario is widely used for introducing students to
the practice of estimating growth rate from field data,
and is also applicable to many surveillance monitoring
programs and population assessments (Table 1).

Trend analyses of monitoring data will likely proliferate
with continued human-caused stresses on plants and
animals (Balmford et al. 2003, Marsh and Trenham
2008), and yet both our review of first principles of model
construction and our simulations indicate that the most
widely used method of log-linear regression of abundance
data against time (i.e. EGOE) performs poorly if variance in

Figure 2. Estimation of coverage of confidence intervals of trend (m). Scenarios are similar to Fig. 1, except that dependent variable is the
percentage (of 5000 simulations) of trend 50% CI’s that contains the true trend. The horizontal line shows the expected 50% coverage.
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the time series includes meaningful amounts of process
variation. We find that a state space model (EGSS) was
superior to either the EGOE or EGPN for the same length
of sampling. The robustness of the EGSS model to the
absence of more than half of the counts in the time series
implies that in some cases improved estimates of trend and
its variance may be obtained by skipping some consecutive
years in a monitoring program and putting the money saved
into extending the time series or improving estimates for
each year that data are collected.
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Appendix 1

Description of three exponential growth models 
allowing unequal intervals in the time series, with 
computer program in R

Here we first describe the assumptions and statistical methods en-
tailed in fitting the EGOE and EGPN models to data, and then 
describe the EGSS model, including a novel extension of its sta-
tistical inferences to accommodate unequal time intervals in the 
trajectory of abundance observations. As in the main text, we use 
the statistical notation convention of lower case to denote data (a 
particular outcome of a stochastic model) as well as constants, and 
upper case to denote the stochastic process (random variable) that 
generates data. So, we write n(0), n(t1), …, n(tq) for a recorded 
time series of population abundances (the data) at times 0 (= t0), 
t1, …, tq, and N(t) for a random population abundance at time t 
with some associated probability distribution. 

EGOE model
We first consider the case where the population abundances in the 
time series (n(0), n(t1), …, n(tq)) contain observation or sampling 
error but negligible process variance in the form of environmental 
or individual variation. The lognormal distribution is an often rea-
sonable model of observation error because it reflects the heteroge-
neity of ecological sampling conditions (Dennis et al. 2006). Let 
x(t) = ln n(t), and let Y(ti) be a value of x(t) estimated or observed 
with error at time ti. Under these assumptions, we can write the 
EGOE model as

X(t) = x(0) + (ln λ)t	  (A1)

Y(ti) = x(ti) + Fi	  (A2)

where Fi has a normal distribution with mean 0 and variance τ2 
(Fi~ normal(0, τ2)). Generally, pure observation or sampling error 
is independent across sampling occasions, so F0, F1, …, Fq can 
be assumed to be uncorrelated. Presence of autocorrelated errors 
would tend to suggest that the observations are influenced by sto-
chastic process noise in the population in addition to observation 
error and would warrant use of a different model. An equivalent 
way of writing the model for Y(ti) is

Y(ti) ~ normal(βμti +,τ2) ,	  (A3)

where β = x(0) and μ = ln λ, with Y(0), Y(t1), …, Y(tq) independ-
ent. The parameter μ is the trend parameter and can be interpreted 
as the expected difference in observations separated by one time 
unit:

E[Y(t) – Y(t – 1)] = μ	  (A4)

The variance of such a difference would be 2τ2.
This statistical model for log-scale linear trend and observation-

error-only is that of ordinary linear regression. For convenience we 
denote the time series of estimated log-abundances data by y(0) 
= y0, y(t1) = y1, …, y(tq) = yq. The likelihood function for the un-
known parameters β, μ, and τ2 is a product of normal probability 
density functions:

 

L β ,μ , τ
2( ) = τ

2
2π( )−1/2

exp −
y

i
− β + μ t

i
( )[ ]2

2τ
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i = 0

q

∏  	  (A5)

This likelihood function is identical to the likelihood for a linear 
regression using the yi’s as the response variable values and the ti’s 
as the predictor variable values. The maximum likelihood (ML) 
estimates for β and μ are the values that jointly maximize the like-
lihood and are the familiar least squares estimates; that is, trend 
(μ) is estimated by the slope of the linear regression. The bias-
corrected ML estimate,  ̂τ

2 , of the variance parameter is the sum 
of squared model residuals divided by q – 1 (mean squared error 
in most regression packages), the total number of observations be-
ing q + 1.

The confidence interval is calculated as 
 
μ̂ ± t

α 2 ,q − 1
SE(μ̂) , 

where 
 
t
α 2 ,q − 1

 is the  100 1 − α/2( )[ ] th percentile of a student’s 
t-distribution with q – 1 degrees of freedom and  SE(μ̂)  is:

 

SE(μ̂ ) =
τ̂

2

t
i
− t( )2

i = 0

q

∑
 	  (A6)

If the data production process justifies use of the EGOE model, 
that is, if stochastic variability in the underlying population can be 
assumed negligible, then the statistical analysis has some conven-
iences. All the inferences from standard linear regression, such as 
confidence intervals and hypothesis tests, remain valid. The point 
estimate and confidence interval boundaries for λ are found by 
exponentiating those for μ. In addition, if population abundance 
is appropriately indexed, that is, if the observation process has a 
mean proportional to population abundance, or log-abundance 
is estimated with an additive sampling bias (if for instance a con-
sistent proportion of animals elude sampling), then the bias or 
index constant will be absorbed into the intercept parameter β. 
The trend estimate will remain the same.

EGPN model
The EGPN model is the “diffusion process” model of Dennis et 
al. (1991). The model assumes that during any small time interval 
dt, the population’s log-scale growth rate experiences a random 
perturbation due to environmental variability:

 d ln N(t) = lnλ( )dt + dB(t)  	  (A7)
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or

 dX(t) = lnλ( )dt + dB(t)  	  (A8)

Here dB(T) ~ normal(0, σ2 dt). The random quantity dB(t) is an 
increment of a Brownian motion stochastic process over a small 
time interval, with the correlation between dB(ti) and dB(tj) equal 
to 0 if 

 
t

i
≠ t

j
, and σ2 is a positive constant. Written this way as 

a ‘stochastic differential equation,’ Eq. A8 can be regarded as just 
a recipe for simulating a trajectory of population abundance for 
specified values of λ and σ2 (for instance, Allen 2003, Higham 
2001): (1) Over a tiny time interval dt, generate an increment 
dX(t) of log-abundance from a normal distribution with a mean of 
(ln λ)dt and a variance of σ2dt. (2) Update log-population abun-
dance as X8t) + dX(t) and update time as t + dt. (3) Return to step 
(1) and repeat the process for a new time interval, generating a new 
normal random number uncorrelated with the previous one.
The process X(t) is the same as Brownian motion with drift (Den-
nis et al. 1991); the original scale process N(t) = exp (X(t)) is of-
ten termed geometric Brownian motion, especially in investment 
analysis (Ross 2002). The model is a time series model that in-
duces dependence among the population abundances N)0), N(t1), 
... N(tq). However, the process N(t) (along with X(t)) is a Markov 
process, that is, the statistical properties of the distribution of N(t 
+ s) given the value of N(t) do not depend on observations previ-
ous to N(t). Furthermore, it can be shown that the conditional 
distribution of X(t + s) given that X(t) is fixed at the value x(t) is a 
normal distribution:

 X(t + s) | X(t) = x(t){ }  ~ normal (x(t) + μ, σ2s))	  (A9)

where μ = ln λ and  s ≥ 0 . In discrete time, with equal time inter-
vals between observations, the process X(t) is a form of nonstation-
ary autoregressive model that has served as the null hypothesis in 
statistical tests of density dependence (Dennis and Taper 1994).
Our trend parameter defined by μ = ln λ in the EGPN model is in-
terpreted as the expected change of a population’s log-abundance 
in one time unit. For the EGSS model, the geometric mean of 
N(t) given by

 exp E logN(t)[ ]{ } = exp E X(t)[ ]{ } = exp μt( ) 	  (A10)

characterizes ‘typical’ sample paths of N(t) better than does the 
mean population size

 
E N(t)[ ] = exp μ + σ 2 2( ) t⎡⎣ ⎤⎦ 	  (A11)

The geometric mean happens to be the same as the median for 
the highly skewed lognormal distribution of population size. The 
quantity eμ gives a better portrait of the growth rate of the bulk 
of the sample paths than does  e

μ + σ
2

2  (Tuljapurkar 1989, Den-
nis et al. 1991). The environmental ‘process noise’ is additive on 
the logarithmic scale and produces proportional variability at all 
population abundances (unlike ‘demographic’ process noise which 
produces essentially deterministic behavior at large population 
abundances). Unlike observation error, process noise causes sto-
chastic fluctuations regardless of whether or not the population 
is observed.

The observations x0, x1, …, xq recorded at times 0, t1, …, tq, 
are now assumed to be log-transformed population census val-
ues (i.e. no observation error). The likelihood function used for 
this model is the joint probability density of x1, …, xq, given the 
starting population of x0. Due to the above-mentioned Markov 
property, the likelihood function can be conveniently written as a 
product of conditional normal densities:
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Here sj = tj – tj–1. This is the likelihood function for the log-trans-
formed abundances; the likelihood displayed in Dennis et al. 
(1991) is a product of lognormal densities for the untransformed 
abundances. Either likelihood yields the same parameter esti-
mates. Here the initial population abundance is not an unknown 
parameter, because there is no observation error in the model. As 
described by Dennis et al. (1991), the ML estimates for μ and σ2 
can be calculated with formulas (Eq. 24–26 in Dennis et al. 1991) 
or by simple linear regression with the intercept fixed at zero using 
the transformed values 

 
x

j
− x

j − 1
( ) / s

j
 as the response variable, 

and the transformed time intervals 
 

s
j

 as the predictor variable. 
The resulting slope estimate is the ML estimate of μ, and the mean 
squared error is the bias-corrected ML estimate of σ2. The time 
intervals (s1, s2, …) do not need to be equal to obtain the ML 
estimates of μ and σ2.

Note that this maximum likelihood estimator of trend reduces 
(see equation 24 in Dennis et al. (1991) to a form using only the 
first (n(t0)) and last (n(tq)) abundance estimates in the time series, 
and the total duration of the survey (i.e. the time interval between 
the first and last observations):

 

μ̂ =
1

t
q
− t

0

ln
n(t

q
)

n(t
0
)

⎛

⎝⎜
⎞
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	  (A13)

All counts are used, however, to estimate the variance.
The confidence interval is calculated as 

 
μ̂ ± t

α 2 ,q − 1
SE(μ̂) , 

where 
 
t
α 2 ,q − 1

 is the  100 1 − α/2( )[ ] th percentile of a student’s 
t-distribution with q –1 degrees of freedom and  SE(μ̂)  is:

 

SE(μ̂ ) =
σ̂

2

t
q
− t

0

	  (A14)

EGSS model, extended to unequal time intervals between 
observations
An exponential growth model with both process noise and obser-
vation error can be constructed by combining the EGOE and the 
EGPN models, creating a state space model with an unobserved 
stochastic population component, X(t), and an observed or esti-
mated component, Y(t):

DX(t) = (ln λ)dt + dB(t)	 (A15)

Y(ti) = X(ti) + Fi	 (A16)

Here dB(t) ~ normal(0, σ2dt) and Fi~ normal(0, τ2), with no auto- 
or cross-correlations. In other words, the unobserved population 
is governed by the EGPN model, but the data are created with ob-
servation error as in the EGOE model. The EGSS model was pro-
posed by Holmes (2001), and parameter estimation was studied 
by Lindley (2003), Staples et al. (2004) and Dennis et al. (2006). 
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These authors defined the model in discrete time, with equal in-
tervals between samples. Equation A15 and A16 incorporate the 
continuous time version of X(t) and constitute an extension of the 
EGSS model to unevenly spaced sampling times. 

In simulations, the ML parameter estimates for the EGSS mod-
el tend to have a persistent small-sample bias (Staples et al. 2004). 
An improvement to ML estimation can be made, akin to restricted 
maximum likelihood (REML) estimation in mixed effects models. 
Staples et al. (2004) showed that REML estimates based on sec-
ond differences of the observations were superior to ML estimates 
for the EGSS model; their ML and REML estimates, however, 
were based on equally spaced time intervals between observations. 
The ML and REML estimates are extended to unequally spaced 
sampling times as follows. Staudenmayer and Buonaccorsi (2006) 
provide a more theoretical treatment.

The model has four unknown parameters: β (= x0), μ (=ln λ), 
σ2 and τ2. The observations Y(0), Y(t1), …, Y(tq) are dependent 
but not Markovian, and they have a joint multivariate normal dis-
tribution in which the mean of Y(t) is β + μt, the variance of Y(t) 
is σ2t + τ2, and the covariance of Y(t) and Y(t + s) is σ2t, for any 
times  t,s ≥ 0 . For ML estimation, the multivariate normal log-
likelihood function given by 

 
ln L β,μ,σ 2 ,τ 2( ) = −

q + 1( )
2

ln 2π( ) − 1

2
ln V( ) − 1

2
y − m( ) 'V −1 y − m( ) 	(A17) 

is used. Here the data values y0, y1, …, yq recorded at times 0, t1, 
…, tq are the elements of the column vector y, the means β, β + μt1, 
β + μt2, … are the elements in the column vector m, the variances 
τ2, σ2t1 + τ2, σ2t2 + τ2, … are the elements on main diagonal in the 
matrix V, and the (i, j)th and (j, i)thcovariance elements in V are 
both σ2ti, where ti < tj:
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The ML parameter estimates are calculated from the log-likeli-
hood function with numerical maximization (for instance, with 
the ‘optim’ function in R; R Core Development Team 2006).

The REML estimates are found by rescaling the differences of 
the observations. The scaled first differences of the observations, 
defined by

 
W

i
=

1

s
i

Y(t
i
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i − 1
)[ ] , i = 1, 2, …, q	  (A19)

with si = ti –ti–1, have a multivariate normal distribution with a 
constant mean vector equal to jμ (j is a column vector of ones), 
that is, E(Wi) = μ. The variance-covariance matrix V1 of the Wi’s is 
found as the matrix product
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is a q × (q + 1) matrix with all elements zero except for those on 
the two long diagonals, and with V being the variance-covariance 
matrix of the Y(ti)’s. By carrying out the matrix multiplications 
we find the resulting variances and covariances of the Wi’s to be: 

 
V(W

i
) = σ 2 /s

i
( ) + 2τ 2 /s

i

2( ) ,  Cov(W
i
,W

i + 1
) = − τ 2 / s

i
s

i + 1
( )

,  Cov(W
i
,W

i + k
) = 0 ( k ≥ 2 ) . Note that one parameter, the 

initial condition β, has been eliminated from the distribution of 
the Wi’s. When the intervals si are equal, the model for the Wi’s 
is equivalent to a normal linear mixed model in which the var-
iance-covariance matrix has constant main diagonal, equivalent 
and constant subdiagonals, and zeros elsewhere. As Staples et al. 
(2004) noted, existing software packages for linear mixed models 
often allow such a ‘banded Toeplitz’ structure to be specified , and 
so REML estimates of EGSS parameters can be readily obtained 
(programs provided by Staples et al. 2004). When the intervals si 
are unequal, however, the variances and covariances of the Wi’s are 
unequal as well. It is not clear how to adapt current software pack-
ages for linear mixed models to accommodate the varied structure. 
Instead, REML estimates for the EGSS model with varying time 
intervals are obtained by numerical maximization. 

The REML estimates are constructed from the second differ-
ences of the observations (first differences of the Wi’s):

Ui = Wi+1 – Wi, i =1, 2, …, q – 1	  (A21)

It can be shown that U1, U2, …, Uq–1 have a multivariate normal 
distribution in which the mean of each Ui is 0, and the variance-
covariance matrix is found as
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is an ordinary (q – 1) × q differencing matrix. Let
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be the twice-differenced data. The log-likelihood for the REML 
estimates is then given by

 
ln L σ 2 , τ 2( ) = −

q − 1( )
2

ln 2π( ) − 1

2
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2
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2
u 'V

2

−1u 	 (A25)

in which u is a column vector containing the values u1, u2, …, 
uq–1, and V2 is the variance-covariance matrix given above. Now 
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two parameters, β and μ, have been eliminated by the differenc-
ing; however, the REML log-likelihood must still be maximized 
numerically for the REML estimates  σ̂

2  and  ̂τ
2 . The estimate of 

the trend parameter μ then is calculated as

	  (A26)

where w is the column vector containing w1, w2, …, wq, with the 
elements in V1 (the variance-covariance matrix for the Wi’s) evalu-
ated using the REML estimates  σ̂

2  and  ̂τ
2 . The variance in the 

trend estimate is:

 

Var(μ̂) =
1

j 'V
1

−1 j( )
	  (A27)

and this variance can be estimated using the REML estimates  σ̂
2  

and  ̂τ
2 . Finally, the estimate of the initial condition β becomes

 
β̂ =

j'V −1 y − tμ̂( )
j'V −1 j

 .	  (A28)

Here 
 
t = [t

0
,t

1
,...,t

q
] ' , with the elements in V (the variance-cov-

ariance matrix for the Y(ti)’s) evaluated using the REML estimates 
 σ̂

2  and  ̂τ
2 .

For the numerical maximizations required for ML or REML 
estimates, initial parameter values are required for starting the it-
erations. Ideally, for a given data set the ML or REML estimates 
should be verified by trying many initial parameter values, be-
cause the EGSS model can produce likelihoods with multiple local 
maxima. However some strategy for automating the calculation 
of initial values is important for processing many data sets or for 
repetitive fitting techniques such as bootstrapping. One possibil-
ity is to fit both the EGOE and EGPN models and then cut in 
half the resulting estimates of τ2 and σ2. Another possibility is to 
use the one-step covariance of the vector of first differences Wi to 
estimate an initial value for τ2 (see Eq. 33 in Dennis et al. 2006) 
and then use the variance of Wi to estimate an initial value for σ2 
(Eq. 32 in Dennis et al. 2006). Also, a standard numerical trick 
to prevent negative parameter values in iterations is to use trans-
formed parameters, i.e. σ2 = exp(θ) and τ2 = exp (δ), and maximize 
log-likelihoods for θ and δ as real-valued parameters.

An asymptotic  100 1 − α( )% confidence interval is calculated 
as  μ̂ ± z

α /2
SE(μ̂)  where  zα /2

is the  100 1 − α/2( )[ ] th percentile 
of the standard normal distribution, and  SE(μ̂)  is: 

 SE(μ̂) = Var(μ̂) 	  (A29)

If a statistical test for zero trend is desired, we suggest using  SE(μ̂)  
and a standard normal percentile in an equivalence testing frame-
work (Dixon and Pechmann 2005). The null hypothesis is that a 
substantial trend is present (i.e. μ is outside of a fixed, specified in-
terval containing zero), and the alternative hypothesis is that trend 
is negligible for practical purposes (μ is inside the specified interval 
containing zero). Dixon and Pechmann (2005) give further details 
about equivalence testing and illustrate the concept with tests for 
the trend parameter in the EGOE model. 

Although finite samples in many models can lead to ML (or 
REML) estimates with skewed sampling distributions accompa-
nied by finite-sample bias, leading to poor CI coverage, we found 
that the sampling distribution of the REML estimates of μ were 
symmetrical and normal. This suggests that μ is being estimated 
well and that the asymptotic theory of ML/REML estimation is 
providing useful approximations for CI construction.
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Computer program, in the R language, for calculating ML and REML estimates of 
parameters in the EGSS model

#  Exponential Growth State Space model:
#  Version Nov.28.2009
#
#  R program for calculating maximum likelihood (ML) and restricted maximum
#  likelihood (REML) estimates of unknown parameters for the Exponential
#  Growth State Space (EGSS) model of stochastic population growth.  
#  The model is
#
#  dX(t) = mu*dt + dB(t)
#               with dB(t) ~ normal(0,ssq*dt),
#  Y(t) = X(t) + F(t)
#               with F(t) ~ normal(0,tsq).
#
#  Here X(t) is log-population abundance, Y(t) is observed or estimated value
#  of X(t), x0, mu, ssq, tsq are parameters.  The parameter ssq is the
#  variance of the process noise, and tsq is the variance of the observation
#  error.
#
#  The model takes population abundance N(t) = exp(X(t)) to be governed by
#  a stochastic, density independent model, with the observed abundances
#  O(t) = N(t)*exp(F(t)) arising from lognormal sampling error.
#
#  User provides time series of observed population abundances o(0), o(1),
#  ..., o(q), which are log-transformed by the program into y(0), y(1), ...,
#  y(q), assumed to be a time series realization of Y(t).  Likelihood
#  function of y(0), y(1), ..., y(q) is that of a multivariate normal
#  distribution.  The observation times t_0, t_1, t_2, ..., t_q can have
#  unequal intervals.
#
#  Program computes initial parameter values for iterations.  The program
#  should be re-run for several sets of initial values, as the likelihood
#  function for the model frequently has multiple local maxima, see program
#  section 4.
#
#  Alternative programs, for observation times with equal intervals,
#  are available as an online appendix to Staples et al. (2004).
#  See also Staudenmayer and Buonaccorsi (2006) for a more theoretical
#  development.
#
#  Program citations:
#    Dennis et al. 2006.   Ecological Monographs.
#    Humbert et al. 2009.  Oikos.
#    Staples et al. 2004.  Ecology.
#    Staudenmayer and Buonaccorsi. 2006.  Biometrics.
#
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#----------------------------------------------------------------------
#        1. USER INPUT SECTION
#----------------------------------------------------------------------
#  
#  The best way to conduct these analyses is by preparing data in Excel, then
#  saving as a text file.
# 
#  In Excel, in cell A1, type (Exactly) the word «Observed.t», without the
#  quotes. Put the observed abundance in column A, starting with row 2.
#  In cell B1, type (Exactly) the word «Time.t» without the quotes. Put the
#  time step identifiers that correspond to the observed population size in
#  column B, starting  with row 2.
#  Your first time step can be 0, or 1, or anything else (e.g. a year).
#
#  ** NOTE: If you have years with no data, that is fine.  
#  Just omit the year and the associated abundance. However, if you have a
#  year where you sampled but got zero abundance, you cannot use these
#  approaches. **
#
#  Once the data sheet is prepared in Excel, save it as on the C:\ drive
#  as “c:\my_data.txt”. It must be a tab delimited text file. 
#  Excel may try to name it my_data.txt.txt or my_data.txt.xls but don’t
#  let it! You can confirm that it is, indeed, a text file by double clicking
#  on it and confirming that it opens with Notepad, not Excel.
#
#  ** NOTE: You can change the drive or the name of the input file by
#  changing the second next line. ** 

rm(list=ls(all=TRUE))		  #  Clears all objects from memory
my_data <- data.frame(read.table(«C:/my_data.txt», header=TRUE, sep=»\t»))
Observed.t <- my_data$Observed.t
Time.t <- my_data$Time.t
print.table(cbind(Observed.t,Time.t))

#  OUTPUT: 2 Files will go the same place as the input file:
#	 GRAPHICS			   my_graph.png
#	 INTERPRET OUTPUT		  my_results.txt
 
#  REST OF THIS SECTION CAN BE IGNORED IF USING EXCEL INPUT
#    Example data below are American Redstart counts from North American
#    Breeding Bird Survey, record # 02014 3328 08636, 1966-95 (Table 1 in
#    Dennis et al. 2006).
#    To run this example, comment out the 5 lines immediately
#    above this paragraph, using the pound sign, and uncomment the 4 lines 
#    immediately below this paragraph, but do not change anything outside 
#    of the user input section.  When you uncomment the lines below, remove
#    only the pound signs at the left side of this document.  Do not remove
#    the pound signs after the semicolons.
#  Observed.t=c(18,10,9,14,17,14,5,10,9,5,11,11,4,5,4,8,2,3,9,2,4,7,4,1,2,
#    4,11,11,9,6);     #  No zeros!  (With zeros, you must use another model)
#  Time.t=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
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#    25,26,27,28,29);  #  Initial time can be nonzero.

#----------------------------------------------------------------------
#        2. PROGRAM INITIALIZATION SECTION
#----------------------------------------------------------------------  
library(MASS);            #  Loads miscellaneous functions (ginv, etc.)
T.t=Time.t-Time.t[1];     #  Time starts at zero.
Y.t=log(Observed.t);      #  Log-transform the observations.
q=length(Y.t)-1;          #  Number of time series transitions, q.
qp1=q+1;                  #  q+1 gets used a lot, too.
S.t=T.t[2:qp1]-T.t[1:q];  #  Time intervals.
m=rep(1,qp1);             #  Will contain Kalman means for Kalman calculations.
v=rep(1,qp1);             #  Will contain variances for Kalman calculations.
sink(file = «C:/my_results.txt», append = FALSE, type = «output», split = T) 
                          #  Tells the program where to write the output
#  ** CHANGE LINE ABOVE IF YOU WANT RESULTS TO GO SOMEWHERE OTHER THAN C:/ DRIVE

#----------------------------------------------------------------------
#        3. SECTION FOR DEFINING ML & REML LOG-LIKELIHOODS
#----------------------------------------------------------------------

#  ML objective function «negloglike.ml» is negative of log-likelihood;
#  the Nelder-Mead optimization routine in R, «optim», is a minimization
#  routine.  The ML objective function uses equations 24-26 from Dennis et
#  al. (2006).  The three function arguments are:  theta, vector of
#  parameters (transformed to the real line), yt, vector of time series
#  observations, and tt, vector of observation times.
negloglike.ml=function(theta,yt,tt)  
{
   muu=theta[1];
   sigmasq=exp(theta[2]);      #  Constrains ssq > 0. 
   tausq=exp(theta[3]);        #  Constrains tsq > 0.
   xzero=theta[4];
   q=length(yt)-1;
   qp1=q+1;
   yt=matrix(yt,nrow=qp1,ncol=1);
   vx=matrix(0,qp1,qp1);
   for (ti in 1:q)
   {
      vx[(ti+1):qp1,(ti+1):qp1]=matrix(1,1,(qp1-ti))*tt[ti+1];
   }
   Sigma.mat=sigmasq*vx;
   Itausq=matrix(rep(0,(qp1*qp1)),nrow=q+1,ncol=q+1);
   diag(Itausq)=rep(tausq,q+1);
   V=Sigma.mat+Itausq;
   mu=matrix((xzero+muu*tt),nrow=qp1,ncol=1);
   ofn=((qp1)/2)*log(2*pi)+(0.5*log(det(V)))+
      (0.5*(t(yt-mu)%*%ginv(V)%*%(yt-mu)));
   return(ofn);
}
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#  REML objective function „negloglike.reml“ is negative of log-likelihood
#  for second differences of the log-scale observations.  The REML objective
#  function uses equations A18-A25 from Humbert et al. (2009).  The three
#  function arguments are:  theta, vector of parameters (transformed to the
#  real line), yt, vector of time series observations (log scale), and
#  tt, vector of observation times.  Function performs the differencing.
negloglike.reml=function(theta,yt,tt)
{
   sigsq=exp(theta[1]);         #  Constrains ssq > 0.
   tausq=exp(theta[2]);         #  Constrains tsq > 0.
   q=length(yt)-1;
   qp1=q+1;
   vx=matrix(0,qp1,qp1);
   for (ti in 1:q)
   {
      vx[(ti+1):qp1,(ti+1):qp1]=matrix(1,1,(qp1-ti))*tt[ti+1];
   }
   Sigma.mat=sigsq*vx;
   Itausq=matrix(rep(0,(qp1*qp1)),nrow=q+1,ncol=q+1);
   diag(Itausq)=rep(tausq,q+1);
   V=Sigma.mat+Itausq;
   ss=tt[2:qp1]-tt[1:q];
   D1mat=cbind(-diag(1/ss),matrix(0,q,1))+cbind(matrix(0,q,1),diag(1/ss));
   D2mat=cbind(-diag(1,q-1),matrix(0,q-1,1))+
      cbind(matrix(0,q-1,1),diag(1,q-1));
   Phi.mat=D2mat%*%D1mat%*%V%*%t(D1mat)%*%t(D2mat);
   wt=(yt[2:qp1]-yt[1:q])/ss;
   ut=wt[2:q]-wt[1:q-1];
   ofn=(q/2)*log(2*pi)+(0.5*log(det(Phi.mat)))+
      (0.5*(ut%*%ginv(Phi.mat)%*%ut));
   return(ofn);
}

#----------------------------------------------------------------------
#        4. SECTION FOR CALCULATING EGOE AND EGPN ESTIMATES
#        (FOR USE AS INITIAL VALUES)  
#----------------------------------------------------------------------
# The EGOE estimates
Ybar=mean(Y.t);
Tbar=mean(T.t);
mu.egoe=sum((T.t-Tbar)*(Y.t-Ybar))/sum((T.t-Tbar)*(T.t-Tbar));
x0.egoe=Ybar-mu.egoe*Tbar;
ssq.egoe=0;
Yhat.egoe=x0.egoe+mu.egoe*T.t;
tsq.egoe=sum((Y.t-Yhat.egoe)*(Y.t-Yhat.egoe))/(q-1);

# The EGPN estimates
Ttr=sqrt(S.t);
Ytr=(Y.t[2:qp1]-Y.t[1:q])/Ttr;
mu.egpn=sum(Ttr*Ytr)/sum(Ttr*Ttr);
Ytrhat=mu.egpn*Ttr;
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ssq.egpn=sum((Ytr-Ytrhat)*(Ytr-Ytrhat))/(q-1);
tsq.egpn=0;
x0.egpn=Y.t[1];

# Initial values for EGSS are averages of EGOE and EGPN values 
mu0=(mu.egoe+mu.egpn)/2;    #  For ML only 
ssq0=ssq.egpn/2;            #  For ML and REML
tsq0=tsq.egoe/2;            #  For ML and REML
x00=x0.egoe;                #  For ML only     

# To set different initial values for iterations, enter manually a value
#   after the equal sign of the concern parameter instead of the
#   automatically generated value. Then run again the line and the program
#   section 5 below.
#   Initial values near the EGOE and EGPN models are good for exploring
#   possible alternative local maxima. The values which produce the largest
#   log-likelihood should be used. To see the log-likelihood for the REML
#   estimates type:
#   EGSSreml$value[1];
#   See Dennis et al. 2006 for more details.

#----------------------------------------------------------------------
#        5. SECTION FOR CALCULATING ML & REML PARAMETER ESTIMATES
#----------------------------------------------------------------------

# The ML estimates.
EGSSml=optim(par=c(mu0,log(ssq0),log(tsq0),x00),
   negloglike.ml,NULL,method=”Nelder-Mead”,yt=Y.t,tt=T.t);
params.ml=c(EGSSml$par[1],exp(EGSSml$par[2]),exp(EGSSml$par[3]),
   EGSSml$par[4]);
lnlike.ml=-EGSSml$value[1];
AIC.egss=-2*lnlike.ml+2*length(params.ml);

mu.ml=params.ml[1];           # These are the ML estimates.
ssq.ml=params.ml[2];          #          --
tsq.ml=params.ml[3];          #          --
x0.ml=params.ml[4];           #          --

# The REML estimates.
EGSSreml=optim(par=c(log(ssq0),log(tsq0)),
   negloglike.reml,NULL,method=”Nelder-Mead”,yt=Y.t,tt=T.t);
params.reml=c(exp(EGSSreml$par[1]),exp(EGSSreml$par[2]))

ssq.reml=params.reml[1];   	 #  These are the REML estimates.
tsq.reml=params.reml[2];   	 #           --

vx=matrix(0,qp1,qp1);
for (ti in 1:q)
{
   vx[(ti+1):qp1,(ti+1):qp1]=matrix(1,1,(qp1-ti))*T.t[ti+1];
}
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Sigma.mat=ssq.reml*vx;
Itausq=matrix(rep(0,(qp1*qp1)),nrow=q+1,ncol=q+1);
diag(Itausq)=rep(tsq.reml,q+1);
V=Sigma.mat+Itausq;
D1mat=cbind(-diag(1/S.t),matrix(0,q,1))+cbind(matrix(0,q,1),diag(1/S.t));
V1mat=D1mat%*%V%*%t(D1mat);
W.t=(Y.t[2:qp1]-Y.t[1:q])/S.t;
j1=matrix(1,q,1);
V1inv=ginv(V1mat);
mu.reml=(t(j1)%*%V1inv%*%W.t)/(t(j1)%*%V1inv%*%j1);
j=matrix(1,qp1,1);
Vinv=ginv(V);
x0.reml=(t(j)%*%Vinv%*%(Y.t-mu.reml*T.t))/(t(j)%*%Vinv%*%j);
Var_mu.reml=1/(t(j1)%*%V1inv%*%j1);         #  Variance of mu
mu_hi.reml=mu.reml+1.96*sqrt(Var_mu.reml);  #  95% CI for mu
mu_lo.reml=mu.reml-1.96*sqrt(Var_mu.reml);  #       --

#  Calculate estimated population sizes for EGSS model
#    with Kalman filter, for plotting.
#
#  Choose ML or REML estimates here for calculating model values
#  for plotting (by commenting out the unwanted, default is REML).
#  mu=mu.ml;  ssq=ssq.ml;  tsq=tsq.ml;  x0=x0.ml;
mu=mu.reml;  ssq=ssq.reml;  tsq=tsq.reml;  x0=x0.reml;

m[1]=x0;       	 #  Initial mean of Y(t).
v[1]=tsq;      	 #  Initial variance of Y(t).

for (ti in 1:q)   #  Loop to generate estimated population abundances
{                 #    using Kalman filter (see equations 6 & 7,
                  #    Dennis et al. (2006)).
   m[ti+1]=mu+(m[ti]+((v[ti]-tsq)/v[ti])*(Y.t[ti]-m[ti]));
   v[ti+1]=tsq*((v[ti]-tsq)/v[ti])+ssq+tsq;
}

#  The following statement calculates exp{E[X(t) | Y(t), Y(t-1),...,Y(0)]};
#    see equation 54 in Dennis et al. (2006).  
Predict.t=exp(m+((v-tsq)/v)*(Y.t-m));

#  Plot the data & model-fitted values
plot(Observed.t ~ Time.t,xlab=»time»,ylab=»population abundance»,
   type=»o»,lty=»solid»,pch=1,cex=1);
			   #  Population data are circles.
points(Predict.t ~ Time.t,type=»l»,lty=»dashed»,lwd=1);
			   #  Estimated abundances are dashed line.
legend(«top», c(«Observed.t»,»Predict.t»),lty=c(1,2),pch=c(«o»,»»),bty=»n»)
			   #  Graph legend

#  Print the parameter estimates
parms.egoe=c(mu.egoe,ssq.egoe,tsq.egoe,x0.egoe); #  Collect for printing
parms.egpn=c(mu.egpn,ssq.egpn,tsq.egpn,x0.egpn); #          --
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parms.reml=c(mu.reml,ssq.reml,tsq.reml,x0.reml); #          --
parms.ml=c(mu.ml,ssq.ml,tsq.ml,x0.ml);           #          --
names=c(“mu”,”ssq”,”tsq”,”x0”);                  #          --
types=c(“EGOE”,”EGPN”,”EGSS-ML”,”EGSS-REML”);    #          --

#  Print stuff
matrix(cbind(parms.egoe,parms.egpn,parms.ml,parms.reml),
   nrow=4,ncol=4,byrow=TRUE,dimnames=list(types,names));	

#  Print CI, default is for EGSS-REML
matrix(cbind(mu_lo.reml,mu_hi.reml),nrow=1,ncol=2,byrow=TRUE,
   dimnames=list(„95% CI for MU“,c(„LO“,“HI“)));		

#  Print log-likelihood and AIC for EGSS ML
matrix(cbind(lnlike.ml,AIC.egss),nrow=1,ncol=2,byrow=TRUE,
   dimnames=list(„EGSS ML RESULTS“,c(„LN-LIKELIHOOD“,“AIC“))); 

#  Plot the data & model-fitted values to a png file
png(file = „C:/my_graph.png“)				    #  Open a png file for plotting
#  ** CHANGE LINE ABOVE IF YOU WANT RESULTS TO GO SOMEWHERE OTHER THAN C:/ DRIVE

plot(Observed.t ~ Time.t,xlab=“time“,ylab=“population abundance“,
   type=“o“,lty=“solid“,pch=1,cex=1);
			   #  Population data are circles.
points(Predict.t ~ Time.t,type=“l“,lty=“dashed“,lwd=1);
			   #  Estimated abundances are dashed line.
legend(„top“, c(„Observed.t“,“Predict.t“),lty=c(1,2),pch=c(„o“,““),bty=“n“)
			   #  Graph legend
graphics.off() 	 #  Close graphics file
sink() 		  #  Remove output diversion to results file so output will
			   #    be sent back to the screen
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Figure A1a–b. Data with process noise only: μ= –0.02, σ2= 0.01 and τ2= 0.

Appendix 2

Results from some other parameter combinations

Showing that inferences from the main text Fig. 1 and 2 are robust and generalizable.
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Figure A2a–b. Data with observation error only: μ= –0.02, σ2= 0 and τ2= 0.01.
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Figure 3a–b. Shorter time series: time series length = 10, μ= –0.02, σ2= 0.01 and τ2= 0.01.
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Figure 4a–b. Higher variance: time series length = 30, μ= 0, σ2 + τ2 = 0.12. Ratio of process (σ2) to sampling (τ2) variance ranging 
from 0.01 (trivial process variance) to 100 (trivial sampling variance).
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Figure 5a–b. Large positive trend: time series length = 30, μ= 0.20, σ2= 0.01 and τ2= 0.01.


