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Abstract. Hierarchical statistical models are increasingly being used to describe complex
ecological processes. The data cloning (DC) method is a new general technique that uses
Markov chain Monte Carlo (MCMC) algorithms to compute maximum likelihood (ML)
estimates along with their asymptotic variance estimates for hierarchical models. Despite its
generality, the method has two inferential limitations. First, it only provides Wald-type
confidence intervals, known to be inaccurate in small samples. Second, it only yields ML
parameter estimates, but not the maximized likelihood values used for profile likelihood
intervals, likelihood ratio hypothesis tests, and information-theoretic model selection. Here we
describe how to overcome these inferential limitations with a computationally efficient method
for calculating likelihood ratios via data cloning. The ability to calculate likelihood ratios
allows one to do hypothesis tests, construct accurate confidence intervals and undertake
information-based model selection with hierarchical models in a frequentist context. To
demonstrate the use of these tools with complex ecological models, we reanalyze part of
Gause’s classic Paramecium data with state–space population models containing both
environmental noise and sampling error. The analysis results include improved confidence
intervals for parameters, a hypothesis test of laboratory replication, and a comparison of the
Beverton-Holt and the Ricker growth forms based on a model selection index.

Key words: AIC; Bayesian statistics; data cloning; frequentist statistics; hierarchical models; likelihood
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INTRODUCTION

Reliable understanding of complex ecological data

depends on the formulation of proper statistical models

of the underlying processes. Hierarchical statistical

models have proved highly useful for achieving such

understanding in many ecological systems (see Table 1

in Lele et al. 2007). Such models allow researchers to

incorporate variability in parameters that otherwise

might be unrealistically treated as fixed. In addition,

these models allow the incorporation of multiple layers

of process and observation uncertainty. Stochastic

population models with added observation error (De

Valpine and Hastings 2002, Clark and Bjørnstad 2004,

Staples et al. 2004, Dennis et al. 2006, Lele 2006,

Newman et al. 2006, Sæther et al. 2007), stochastic

models of species abundance distributions (Etienne and

Olff 2005), and capture–recapture models with uncertain

capture probabilities (George and Robert 1992) are just

a few examples of this broad class of random effects

models.

Until recently, computational difficulties rendered

many frequentist statistical inferences for hierarchical

models unfeasible. For all but the simplest models,

computing the likelihood function needed for such

inferences requires computing an intractable, high-

dimensional integral. Inferences using computer inten-

sive Bayesian methods side step this difficulty by

simulating observations from a posterior distribution

using one of the various Markov chain Monte Carlo

(MCMC) algorithms (Robert and Casella 2005). Al-

though other approaches are possible, the new data

cloning (DC) algorithm by Lele et al. (2007) provides

convenient tools to carry out frequentist estimation of

the parameters in general hierarchical models. An often-

repeated justification of the Bayesian approach is the

fact that as sample size increases the Bayesian solution

approaches the maximum likelihood solution (Walker

1969). The trick in data cloning is to apply a Bayesian

methodology to a data set constructed by duplicating

the original data set enough times that the Walker

theorems apply.
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DC applies Bayesian prior distributions and MCMC

simulations to k copies (clones) of the data. If the

number of clones is large, the sample mean vector of the

resulting simulated posterior distribution corresponds to

the maximum likelihood (ML) estimates of the param-

eters. As well, the sample variance-covariance matrix of

the posterior, multiplied by k, provides estimates of

variances and covariances of the ML estimates (inverse

of the observed information matrix in the theory of ML

estimation). The estimated variances can be used to

obtain Wald-type confidence intervals (see Lele et al.

[2007] for a full discussion).

Despite its general applicability, the DC method as

proposed by Lele et al. (2007) has two important

limitations. First, Wald-type symmetric confidence

intervals often have less than nominal coverage rates

(see Meeker and Escobar [1995] for an accessible

discussion), and hence Wald-type DC confidence inter-

vals share this defect. Improved confidence intervals

exist; for example, it is well known that profile likelihood

(PL) based confidence intervals tend to have better

statistical coverage properties than the Wald-type

intervals (Meeker and Escobar 1995, Pawitan 2001).

Second, while DC provides ML estimates of the model

parameters, it does not provide the value of the

likelihood function evaluated at those estimates. This

is a drawback because the maximized likelihood value is

used to carry out model selection using information

criteria (Burnham and Anderson 1998), to compute PL

confidence intervals and to compute the likelihood ratio

(LR) statistic for hypothesis testing (Pawitan 2001).

In this paper, we improve and extend the frequentist

inferences for hierarchical models. First, we provide a

straightforward algorithm for calculating LRs for

hierarchical models using DC. We call it the data cloned

likelihood ratio (DCLR) algorithm. This algorithm

exploits the fact that just the LR and not the maximized

likelihood value is needed for LR hypothesis tests, PL

confidence intervals and for model selection (Thompson

1994, Pawitan 2001). Second, we describe the use of the

DCLR algorithm for conducting LR hypothesis testing

and for calculating the differences in values of informa-

tion-theoretic criteria needed for model selection. For

PL confidence intervals we extend the DCLR algorithm

to accomplish PL calculations in a computationally

efficient manner. We illustrate these algorithms by

conducting various statistical inferences for state-space

models fitted to data from Gause (1934) on the growth

of laboratory Paramecium sp. populations.

METHODS

The DC method described by Lele et al. (2007) is a

general technique to compute ML estimates along with

estimates of their asymptotic variances for hierarchical

models. The DC method is applicable to any hierarchi-

cal model of the following form:

Y ; f ðy j X ¼ x;/Þ

X ; gðx j hÞ ð1Þ

where Y is a vector of observations, and X is a vector of

unobserved random quantities (often called latent

variables or random effects) on which the observations

depend. Through this article, random variables like the

multivariate random vectors Y and X will be denoted

with capital letters. Realizations of the random variables

will be denoted with lower case letters. For instance, x

and y in Eqs. 1 and 2 below, denote realizations (fixed

constants, samples already drawn) from the random

vectors X and Y, respectively. The probability density

functions for Y and X are denoted by f and g,

respectively. In addition, h is a vector of unknown fixed

parameters affecting the latent variables in X, and / a

vector of unknown fixed parameters related to the

observation model. In some cases, the latent variable

model g is, in turn, formulated with hierarchical layers

of random effects, but such cases do not need to be

notationally distinguished in the methods we present.

For the class of models represented by Eq. 1, the

likelihood function is given by a multidimensional

integral:

Lðh;/; yÞ ¼
R R
� � �
R

f ðy j x;/Þgðx j hÞdx1dx2 � � � dxp

¼
R

f ðy j x;/Þgðx j hÞdx: ð2Þ

Notice that the dimension of the integral is the same as

the number of components ( p) in the vector X,

potentially quite high. For hierarchical models that are

not based on the normal distribution, the integral is

usually too difficult to evaluate, even numerically.

The DC method commandeers the Bayesian compu-

tational approach for frequentist purposes. In the

standard Monte Carlo Bayesian approach, one gener-

ates samples from the posterior distribution p(h, / j y)
that is proportional to product of the likelihood

function L(h, /, y) and a specified proper prior

distribution p(h, /), without actually having to evaluate

the likelihood function. In DC, one generates samples

from the posterior distribution p(k)(h, / j y) that is

proportional to the kth power [L(h, /, y)]k of the

likelihood and a specified proper prior distribution p(h,
/), without having to evaluate the likelihood (Eq. 2).

The expression [L(h, /, y)]k is the likelihood for k copies

of the original data. Lele et al. (2007) show that, for k

large enough, p(k)(h, / j y) converges to a multivariate

normal distribution with mean equal to the ML estimate

of the model parameters and variance–covariance

matrix equal to 1/k times the inverse of the Fisher

information matrix for the ML estimates (Appendix in

Lele et al. 2007). This factor of 1/k adjusts for the fact

that the cloned data set has k times more information

than the original data set. DC proceeds by generating a

large number of random numbers from the DC

posterior distribution using MCMC; the sample mean

vector of the generated random numbers provides the
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ML estimates of the model parameters, and k times their

sample variance–covariance matrix is an estimate of the

asymptotic variance–covariance matrix for the ML

estimates.

LR and PL computation

In what follows we show how DC, combined with the

result in Appendix A, can be used to compute the ratio

of likelihoods evaluated at two different sets of

parameter values.

Let (h(0), /(0)) be a particular set of parameter values

(i.e., a point in the parameter space) and let (h(1), /(1)) be

another such point. The DCLR algorithm computes the

ratio L(h(0), /(0))/L(h(1), /(1)). Such a ratio is needed, for

instance, for a LR test between two nested models. In

that case, (h(0), /(0)) are the data cloned ML estimates

under the constrained model and (h(1), /(1)) are the data

cloned ML estimates under the full model. The steps in

the DCLR algorithm are the following:

1) Generate m random data samples x(1), x(2), � � � , x(m)

from the conditional distribution

h
�

x j y; hð1Þ;/ð1Þ
�

} f
�

y j x;/ð1Þ
�

g
�

x j hð1Þ
�

of the latent variables. These samples are obtained with

a straightforward MCMC algorithm using g(x j h(1)) as
the prior distribution and f (y j x, /(1)) as the likelihood

in a typical Bayesian calculation.

2) Estimate the desired LR as

L
�
hð0Þ;/ð0Þ

�

L
�
hð1Þ;/ð1Þ

�’
1

m

Xm

j¼1

f
�

y j xð jÞ;/ð0Þ
�

g
�

xð jÞ j hð0Þ
�

f
�

y j xð jÞ;/ð1Þ
�

g
�

xð jÞ j hð1Þ
�:

See Thompson (1994) and Appendix A for a

derivation of this approximation.

The above algorithm extends to the calculation of

profile likelihoods. Suppose we are interested in the

profile likelihood for a subset hS of the components of h.
The remaining components of h are denoted by hC so

that h ¼ [hS, hC]. One could also single out components

of / for study, but for simplicity of exposition we

describe the algorithm in terms of hS only. Then, the

steps to calculate the profile likelihood are

1) Calculate ML estimates (ĥ, /̂) using DC.

2) For the parameter(s) of interest hS select an array of

dimension J of fixed values/vectors hð1ÞS , hð2ÞS , � � � , hðJÞS

bracketing the ML estimate(s) sufficiently broadly for

the desired confidence levels to be contained.

3) For each value hð1ÞS , hð2ÞS , � � � , hðJÞS in turn, conduct

data cloning to maximize the likelihood for all other

parameters hC. Then, for each array element, this

produces a vector of constrained ML estimates (fĥð1ÞC ,

/̂(1)g, fĥð2ÞC , /̂(2)g, � � � , fĥðJÞC , /̂(J )g).
4) Generate m random samples x(1), x(2), � � � , x(m)

from h(x j y, ĥ, /̂).
5) Then, for each hðiÞS , i ¼ 1, 2, � � � , J calculate the

following sample average:

L
�
hðiÞS ; ĥ

ðiÞ
C ; /̂

ðiÞ�

Lðĥ; /̂Þ
’

1

m

Xm

j¼1

f
�

y j xð jÞ; /̂ðiÞ
�

g
�

xð jÞ j hðiÞS ; ĥ
ðiÞ
C

�

f
�

y j xð jÞ; /̂
�

g
�

xð jÞ j ĥ
� :

Note that the above sample averages can be evaluated
simultaneously for the whole array of parameter values

using the single extra MCMC chain generated from

h(x j y, ĥ, /̂), along with vectorized calculations.
6) The plot of the surface of sample averages versus

the fixed parameter values hð1ÞS , hð2ÞS , � � � , hðJÞS is the
relative profile likelihood for the parameter of interest,

hS.
A 100(1� a)% confidence region for hS based on the

chi-square approximation to the LR consists of the

region of values of hS for which�2 times the log-profile
LR is less than the 100(1 � a)th percentile from a chi-

square distribution. The degrees of freedom of the chi-
square distribution is equal to the number of parameters

in hS. For one parameter, the 95% critical region occurs

when the relative profile likelihood is above 0.1464. We
emphasize that the entire profile likelihood requires only

one MCMC simulation (the values x
(1), x(2), � � � , x(m)

simulated using h(x j y, ĥ, /̂) in step 4).

Model selection with information criteria

The differences of Akaike Information Criteria (AIC)

needed for model comparison depend only on the ratio
of the maximized model likelihoods and the difference in

the number of parameters between the two models.
(Burnham and Anderson 2002):

AIC1 � AIC2 ¼ �2ln
L̂1

L̂2

� �

þ 2ðd1 � d2Þ ð3Þ

where d1 and d2 are the number of parameters estimated
under models 1 and 2, respectively. Differences of other

common information criteria such as the AICc (Hurvich
and Tsai 1989) and the SIC (Schwarz 1978) also depend

on the likelihood only through the likelihood ratio and
thus can be calculated using the DCLR algorithm. For a

collection of more than two models, the LRs need to be
calculated for all pairs of models. However, LRs for all

pairs can be generated from the smaller set of LRs

resulting from pairing each model with a single reference
model by taking appropriate quotients (Burnham and

Anderson 2002). As with the profile likelihood, all LRs
in the smaller set can be evaluated using a single set of

latent variables (random effects) simulated from their
posterior distribution under the reference model.

EXAMPLES USING GAUSE’S EXPERIMENTS

Data description

To illustrate the methods proposed in this paper, we

revisited the single-species population growth data from
Gause’s (1934) laboratory experiments with Paramecium

aurelia. Lele et al. (2007) used the same data set to
exemplify the DC method for calculating ML parameter

estimates and standard errors, and here we extend their
analyses to include LR hypothesis testing, information
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criterion based model identification, and PL confidence

intervals.

Gause initiated three independent replicate liquid

cultures on day 0 at a concentration of two individuals

per 0.5 cm3 of culture media. Then, on days 2–19, he

took daily 0.5-cm3 samples of the microbe cultures and

counted the number of cells in each sample. Although

Lele et al. (2007) fitted a hierarchical state–space model

to Gause’s data set taking into account both process

noise and observation error, many inferential questions

remain unanswered. For instance, do the three replicates

represent realizations of a single process or do they

represent three different processes? Which model,

among a suite of stochastic population growth models,

best describes the data? Are the Wald-type confidence

intervals proposed by Lele et al. adequate given that

Gause’s time series consist of just 20 time steps? In what

follows we illustrate how LR tests, PL confidence

intervals, and AIC-based model selection all implement-

ed using the DC algorithms described above may serve

to answer these questions.

Description of alternative models

We used two discrete time stochastic models of

population dynamics to describe Gause’s data. The

two models were state-space versions of the Ricker and

the Beverton-Holt models. Each model incorporates a

latent variable component X to describe an unobserved

time series of actual population abundance (numbers of

individuals per 0.5 cm3 culture media). The elements of

X are denoted as Xt, where the time index t goes from 0

to q. The latent variable component contains density

dependence (Ricker or Beverton-Holt) and stochastic

process noise. Each model incorporates an observation

component Y as well, to account for variability caused

by sampling.

The latent variable component is formulated in terms

of the underlying log-abundance Xt¼ ln(Nt) and has the

form: Xt¼m(Xt�1)þrZt, where Zt ; N (0, 1) and r is a

positive constant. The function m(�) specifies the

deterministic skeleton of the population dynamics model

(that is, the type of density dependence) as a function of

the log abundance x:

mðxÞ ¼
aþ x � bex ðRickerÞ
lnkþ x � ln½1þ bexpðxÞ� ðBeverton-HoltÞ:

(

ð4Þ

In this equation, b, k, and b are positive constants. The

joint distribution for a single time series of population

log-abundances, x ¼ [x1, x2, � � � , xq]T (where T denotes

the transpose), is following Dennis and Taper (1994):

gðxjhÞ ¼
Yq

t¼1

ðr22pÞ�ð1=2Þ
exp � ½xt � mðxt�1Þ�2

2r2

( )

: ð5Þ

For the Ricker model, h ¼ [a, b, r2]T, and for the

Beverton-Holt model, h ¼ [k, b, r2]T. The initial log-

abundance is x0, and for Gause’s data x0 ¼ ln 2. The

distribution g(x j h) will serve as the latent variable

component in the hierarchical model (Eq. 1).

The Paramecium samples were pipetted from well-

mixed cultures, and therefore a Poisson sampling model

is appropriate. Let y ¼ [y2, y3, � � � , yq]T denote the time

series of sample counts from a single population culture.

The joint distribution for y given the underlying

population trajectory is x, is given by a product of

Poisson probabilities:

f ðy j x;/Þ ¼
Yq

t¼2

e�nt nyt
t

yt!
ð6Þ

where nt¼ exp(xt). The distribution f(y j x, /) will serve
as the observation component of the hierarchical model

(Eq. 1). Note, for this model, the parameter / does not

exist because the Poisson sampling process is specified

by its expectation, nt ¼ exp(xt) in this case, with no

additional unknown parameters.

Likelihood function

The data consists of trajectories from three popula-

tion cultures. Assuming the cultures are independent

from each other the likelihood function is

Lðh1; h2; h3Þ ¼
Y3

j¼1

R
f ðyj j xjÞgðxj j hjÞdxj: ð7Þ

The parameter vector for the jth culture is denoted by hj,
j ¼ 1, 2, 3.

LR test.—Do the three replicates represent realiza-

tions of a single process or do they represent three

different processes? In ecological data, heterogeneities

abound. One would hope that in the controlled

laboratory setting the biological processes would be

nearly homogeneous, but one should test. Homogeneous

populations will have identical parameters in their

growth models, while parameters for heterogeneous

populations will be distinct. The corresponding statisti-

cal hypotheses are:

H0 : h1 ¼ h2 ¼ h3 ¼ h

H1 : h1 6¼ h2 6¼ h3:

The vector h contains the parameter values in common

among the populations. The LR test statistic is

K ¼ L0ðĥÞ
L1ðĥ1; ĥ2; ĥ3Þ

:

Here, ĥ is the ML estimate of h, L0(ĥ) ¼ L(ĥ, ĥ, ĥ) (see
Eq. 6) and ĥ1, ĥ2, ĥ3 are the ML estimates under the

alternative hypothesis. For illustrative purposes we fitted

the Beverton-Holt model to P. aurelia data. The DCML

estimates for the parameters under the null hypothesis

were k̂ ¼ 2.274, b̂ ¼ 0.00235, r̂ ¼ 0.1274. Under the

alternative the DC ML estimates for the parameters

were k̂1¼ 2.173, b̂1¼ 0.00213, r̂1¼ 0.1187, k̂2¼ 2.2610,

b̂2¼ 0.00247, r̂2¼ 0.1390, and k̂3¼ 2.4160, b̂3¼ 0.00251,

r̂3 ¼ 0.1062.
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The LR test failed to reject the null hypothesis of

common parameters �2 lnK¼ 3.87 df ¼ 9 � 3 ¼ 6, P ¼
0.70.

Model selection

In addition to the Beverton-Holt model we fitted the

Ricker model to the P. aurelia data under the

assumption of common parameters among replicates.

The parameters estimates under the Ricker model were â

¼ 0.7742, b̂¼�0.001429, r̂¼ 0.1375. Hypothesis testing

does not lend itself easily to comparing these two models

because the models are not nested. Therefore we used

the AIC for model comparison. Taking model 1 to be

the Ricker model (d1 ¼ 3) and model 2 to be the

Beverton-Holt model (d2 ¼ 3) the difference in AIC

values was 3.738764. Because this difference is positive

we conclude that the Beverton-Holt model provides a

better description of the data than does the Ricker

model. AIC differences greater than 2 are generally

thought to be significant, and differences greater than 3

very significant (Burnham and Anderson 2002, Taper

2004).

Profile likelihood and confidence intervals

Now we illustrate the use of the profile likelihood
algorithm to compute confidence intervals for the

parameter k in the Beverton-Holt model. To emphasize
the difference between Wald-type and profile likelihood-

type confidence intervals for small samples we per-
formed calculations for just one of the three P. aurelia

cultures. The resulting profile likelihood for k was
somewhat asymmetric, and the corresponding 95%

confidence limits were asymmetric around the ML point
estimate (Fig. 1). Furthermore the Wald-type confidence

interval is liberal relative to profile likelihood confidence
interval with the Wald interval being contained inside

the profile likelihood interval. The main difference
between the two is a lower upper limit for the Wald

interval than for the profile likelihood interval (Fig. 1).

DISCUSSION

The DC method produces ML estimates and esti-
mates of standard errors, from which Wald-type

confidence intervals can be constructed based on
asymptotic ML theory.

Profile likelihood intervals, however, often have better
coverage than Wald-type confidence intervals (Meeker

and Escobar 1995, Pawitan 2001; and see Appendix B).
Also, profile likelihood intervals are invariant to

transformation of the parameters, whereas Wald-type
intervals are not. Wald-type intervals vary in coverage

depending on the transformation used.
In addition to providing confidence intervals, an

entire likelihood profile is a convenient graphical
summary about the information contained in the data

about a particular parameter. In particular, likelihoods
for hierarchical models often have multiple local

maxima (Searle et al. 1992, Dennis et al. 2006), and
the profile likelihood can serve as a diagnostic tool to

reveal such problems.
Confidence intervals and hypothesis tests can, of

course, be done with parametric bootstrapping. The
necessary computational effort to obtain parametric

bootstrap confidence intervals (see Appendix B) is
greater than that needed for profile likelihood, but not

substantially. Parametric bootstrap confidence intervals
share the transformation invariance property with
profile likelihood intervals. Furthermore, confidence

intervals for any functions of parameters are often
easier to calculate via parametric bootstrap.

However the information portrayed in the bootstrap
sampling distribution of the parameter estimates is

somewhat different than the information portrayed in
the profile likelihood: the profile likelihood depicts the

evidence contained in the data regarding different values
of a given parameter (Royall 2000), whereas the

bootstrap sampling distribution depicts the reliability
of the parameter estimate (Efron 2003). Here, reliability

is measured in terms of the variation of the parameter
estimate under repeated hypothetical realizations of the

data generation process.

FIG. 1. Profile likelihood for the parameter k for the first of
the three replicated time series for Paramecium aurelia. The
profile likelihood (solid, black curve) is given relative to the
maximum, i.e., the likelihood evaluated at the maximum
likelihood (ML) estimates. The gray horizontal bar denotes
the 95% profile likelihood confidence, and the gray short
vertical dash denotes the ML estimate. The black parentheses
mark the Wald-type 95% confidence limits. The ML estimates
used in this plot were k̂¼2.13, b̂¼0.2047, and r̂¼0.1203; these
were calculated by passing preliminary estimates from data
cloning through the likelihood ratio algorithm (see Supplement
for details).
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In our experience, constructing the profile likelihood

using the LR algorithm helps improve the numerical

accuracy of the ML estimates under DC. In DC, the

numerical accuracy increases as the number data clones

used increases; however, the calculation time increases

as well. Once an approximate ML estimate is found with

DC, then using that estimate to calculate the profile

likelihood can reveal the location of the likelihood peak

more accurately. As a matter of routine we now

calculate profile likelihoods in two passes: first, with

the approximate ML estimate found with a preliminary

DC analysis, and second, with the improved ML

estimate found from the first profile likelihood. Explicit

details of how the profile likelihood was calculated are

given in the R code shown in the Supplement.

Concluding remarks

A suite of classical frequentist and evidential infer-

ences is now available for complex biological problems

that are modeled using hierarchical statistical models. In

addition to the maximum likelihood parameter esti-

mates and Wald confidence intervals made feasible with

the DC algorithm (Lele et al. 2007), profile likelihood

confidence intervals, hypotheses tests and information

theoretic model selection can be accomplished with the

DCLR algorithm as described in this paper. Until now,

hierarchical models have mostly been analyzed in a

Bayesian framework because frequentist inferences were

computationally intractable. The choice between Bayes-

ian and frequentist approaches is no longer a matter of

feasibility or convenience but rather can and should be

based on the philosophical foundations of statistical

inference preferred by the investigator. This choice,

while philosophical, has profound practical implica-

tions. In this paper, we have focused on the tools that we

are making available for frequentist/likelihood inference

in hierarchical models and not on the philosophical

question. We urge the reader to explore the vast and

controversial literature that is developing surrounding

the philosophical question (see Barnett 1999, Taper and

Lele 2004, Cox 2006, and Thompson 2007 for compar-

ative discussions). Dennis (2004) and Lele and Dennis

(2009) express some of our concerns with using the

Bayesian approach in science.
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APPENDIX A

A proof showing that the ratio of two likelihoods initially written as the ratio of two integrals can be written as the integral of a
ratio, as shown in steps 2 and 5 of the data cloned likelihood ratio algorithm and of the profile likelihood algorithm, respectively
(Ecological Archives E090-027-A1).

APPENDIX B

Simulation study (Ecological Archives E090-027-A2).

SUPPLEMENT

R program illustrating the calculations needed to construct a profile likelihood for one of the stochastic Beverton-Holt state
space model parameters (Ecological Archives E090-027-S1).
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