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ABSTRACT
Populationmatrixmodels are important tools in resourcemanagement, in part because
they are used to calculate the finite rate of growth (‘‘dominant eigenvalue’’). But
understanding how a population matrix model converts life history traits into the finite
rate of growth can be tricky. We introduce interactive software (‘‘IsoPOPd’’) that uses
the characteristic equation to display how vital rates (survival and fertility) contribute
to the finite rate of growth. Higher-order interactions among vital rates complicate
the linkage between a management intervention and a population’s growth rate. We
illustrate the use of the software for investigating the consequences of threemanagement
interventions in a 3-stage model of white-tailed deer (Odocoileus virginianus). The
software is applicable to any species with 2- or 3-stages, but the mathematical concepts
underlying the software are applicable to a population matrix model of any size. The
IsoPOPd software is available at: https://cwhl.vet.cornell.edu/tools/isopopd.

Subjects Mathematical Biology, Natural Resource Management, Population Biology
Keywords Balance equation, Characteristic equation, Projection matrix, Asymptotic growth rate,
Dominant eigenvalue, Leslie matrix, Lefkovitch matrix, Interactive software, Wildlife

INTRODUCTION
Population matrix models (PMMs) are used to assess strategies to manage populations
for resource purposes. These models are regularly found in quantitative ecology texts
(e.g., Fryxell, Sinclair & Caughley, 2014), and have been used in many applied settings
(Salguero-Gómez et al., 2014; Salguero-Gómez et al., 2016). But how familiar are broad
audiences with the mathematics behind the PMM, particularly those that generate the
most prominent model output, the finite rate of growth? We use a visual approach to
provide an alternative way to understand how targeted managerial alterations to a life cycle
can alter the finite rate of growth.

The life history traits of a species (‘‘vital rates’’) govern the mathematical structure of
the PMM (De Kroon, Van Groenendael & Ehrlen, 2000). The vital rates include stage-wise
fertilities, survival, and transition probabilities (Caswell, 2001). The population-scale
demographic properties obtained from the PMM include stage abundances, the finite
rate of growth (hereafter ‘‘ λ’’), the stable stage distribution, net reproductive values,
sensitivities and elasticities (Caswell, 2001), plus a host of transient quantities (Stott,
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Hodgson & Townley, 2012). For example, let an arbitrary 3-stage PMM be:

A=

A11 A12 A13

A21 A22 A23

A31 A32 A33

, (1)

which contains matrix elements Aij (i= 1,2,3, and j = 1,2,3) and where A1j is the average
fertility in the jth stage, Aii is average survival of the ith stage without transition out of the
ith stage, and Aij is the average survival of the jth stage with transition from the jth stage
to the ith stage. Stage-wise abundances are projected through time using (Caswell, 2001): J1
S1
B1

=A

 J0
S0
B0

, (2)

where J0, S0, and B0 are the number of stage one, stage two, and stage three individuals at
time 0, and J1, S1, and B1 are the number of stage one, stage two, and stage three individuals
at time 1. Recursive calculation of Eq. (2) from time 0 through time n yields: Jn
Sn
Bn

=An

 J0
S0
B0

. (3)

As n gets large, An behaves like a single number, denoted λ (Caswell, 2001). Depending
on the citation, λ is called the ‘‘dominant eigenvalue’’, the ‘‘intrinsic rate of growth’’,
the ‘‘asymptotic growth rate’’, or simply ‘‘the growth rate’’. Regardless of which name is
chosen, the λ is the geometric rate of population change once stage oscillations damp out
and the stages approach stable proportions. In other words (Caswell, 2001):

Aw = λw, (4)

where w gives the stable stage proportions.
But to broader audiences, Eqs. (1)–(4) do not necessarily clarify the link between cause

and effect in population dynamics, especially as they pertain to decision making towards
a resource goal. Herein, we attempt to clarify the nature of λ as it pertains to strategic
planning of targeted managerial interventions in resource management settings.

We introduce the interactive software (‘‘IsoPOPd’’) that represents λ in a visual
framework. The graphics provide an alternative way to think about how managerial
alterations to matrix elements (hereafter ‘‘Aij ’’) produce changes in λ. We illustrate the use
of the software with white-tailed deer (Odocoileus virginianus) but remark that the software
may be used to understand cause and effect in any 2- or 3-stage PMM. The software is at:
https://cwhl.vet.cornell.edu/tools/isopopd.

METHODS
A common life history contains three stages that we define as the juvenile (non-reproducing
individual), early adult (with reproduction rates consistent with mid-life fertility), and late
adult (with reproduction rates consistentwith late-life fertility) stages.WeuseA to represent

Hanley et al. (2019), PeerJ, DOI 10.7717/peerj.8018 2/15

https://peerj.com
https://cwhl.vet.cornell.edu/tools/isopopd
http://dx.doi.org/10.7717/peerj.8018


the PMM for such a species. The characteristic equation for A is found in linear algebra
textbooks (e.g., Strang, 2016):

λ3+ (−A11−A22−A33)λ2+ (A11A22+A22A33+A11A33−A32A23−A21A12−A13A31)λ

+(A11A32A23+A12A21A33+A31A13A22−A11A22A33−A21A13A32−A31A12A23)= 0. (5)

Using the notation for the superparameters (‘‘coefficients of the characteristic equation’’)
in Hanley & Dennis (2019), the superparameters are:

p= (−A11−A22−A33), (6)

q= (A11A22+A22A33+A11A33−A32A23−A21A12−A13A31), (7)

and

r = (A11A32A23+A12A21A33+A31A13A22−A11A22A33−A21A13A32−A31A12A23), (8)

yielding an abbreviated form of the characteristic equation:

λ3+pλ2+qλ+ r = 0. (9)

The software focuses on the link between p, q, and r and λ. In particlar, the characteristic
equation (Eq. (9)) contains four 3-dimensional volumes (‘‘orthotopes’’) that must always
balance positive and negative contributions of p, q, and r to zero. In the context of resource
management, targeted intervention activities modify the values of p, q, or r , leaving λ to
respond in a manner that maintains the overall equality. Indeed, Eq. (9) is the set of rules
by which λ must respond to any managerial strategy. Positive and negative influences on
λ appear in Table 1.

IsoPOPd was developed to provide an alternative way to understand how λ responds
to managerial alterations to p, q, and r . The IsoPOPd software converts any PMM into
a visual representation of their p, q, and r values, from which λ is obtained. The user
defines the structure of a 3-stage PMM, then designates the values of each of the nine
Aijs. The Characteristic equation tab displays the inputs (the PMM itself), the output (the
corresponding λ), and the mathematical linkage between the two (Eq. (9)). The remaining
tabs use a visual framework to illustrate the nature of the linkage. The Breakdown of the
λ3 term tab shows the first orthotope, λ3, a 3-D cube scaled to dimensions (λ × λ ×
λ). The Breakdown of the pλ2 term tab shows the second orthotope, pλ2, the 3-D volume
scaled on one side by the vital rates in p (Eq. (6)), and on the remaining two sides by λ.
The negative sign in front of pλ2 (and the light blue shading in the software graphics)
represents a negative contribution to Eq. (9), but an opposite (positive) contribution to λ.
The Breakdown of the qλ term tab shows qλ, the trio of sub-orthotopes whose dimensions
that may be better understood by rearranging Eq. (7):

q= (A11A22−A21A12)+ (A22A33−A32A23)+ (A11A33−A13A31). (10)

The trio of sub-orthotopes in qλ are scaled on two sides by the vital rates in Eq. (10) and
scaled on the third side by λ. A positive sign (and the black shading in the software graphics)
represents a positive contribution to Eq. (9), but an opposite (negative) contribution to the
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Table 1 Directional contributions of matrix elements to the characteristic equation and λ. In the characteristic equation, λ is the only term that
is free to vary and must do so in a manner that balances all contributions to zero.

Superparameter Orthotope Negative contributions to Eq. (9), but positive
contributions to λ

Positive contributions to Eq. (9), but negative
contributions to λ

λ3 This orthotope shows the response of λ to the changes in parameters.
p; Eq. (6) pλ2 (A11)λ2

(A22)λ2

(A33)λ2

q; Eq. (7) qλ (A32A23)λ
(A21A12)λ
(A13A31)λ

(A11A22)λ

(A22A33)λ
(A11A33)λ

r ; Eq. (8) r A11A22A33

A21A13A32

A31A12A23

A11A32A23

A12A21A33

A31A13A22

final value of λ, while a negative sign (and the light blue shading in the software graphics)
represents a negative contribution to Eq. (9), but an opposite (positive) contribution to λ.
The sub-orthotopes in Eq. (10) therefore make positive and negative contributions to q,
but only the net change is reflected in the final value of qλ. Finally, the Breakdown of the
rterm tab shows the last orthotope, r , the 3-D volume that is scaled on all three sides by
vital rates. The Geometric interpretation of the characteristic equation tab reveals the entire
set of graphical orthotopes (λ3, pλ2, qλ, and r) that comprise Eq. (9). Black and light blue
shadings in these volumes must always balance.

We use the IsoPOPd software to demonstrate the effects on λ from hypothetical
managerial interventions in white-tailed deer (Odocoileus virginianus). We assume A tracks
a single sex (female), the Aij are static, the probability of transition in each stage is one, and
each Aij constitutes an average for members of the jth stage (Caswell, 2001). Let the PMM
be (Chitwood et al., 2015), reduced to two digits):

A=

 0 0.58 0.70
0.14 0 0
0 0.77 0.80

. (11)

We investigated how a 10% increase in survival in the 2nd stage (A32) alters the
configuration of the orthotopes in Eq. (9), and ultimately, λ. We then investigated how
a 10% increase in survival in the 3rd stage (A33) alters the orthotopes and λ. Finally, we
investigated a combination scenario where survival is increased by 10% in both 2nd and
3rd stages.

RESULTS
The characteristic equation for the unperturbed deer scenario (Eq. (11)) is:

λ3+ (−A33)λ2+ (−A21A12)λ+ (A21A12A33−A21A13A32)= 0, (12)

or equivalently,

λ3+ (−0.8)λ2+ (−0.081)λ+ (−0.0105)= 0. (13)
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Figure 1 The orthotope of λ3 in the non-perturbed white-tailed deer scenario (Eq. (13)). Here λ =
0.09.

Full-size DOI: 10.7717/peerj.8018/fig-1

Figure 2 The orthotope of pλ2 (Eq. (12)). This volume is a negative contribution to Eq. (12) but a posi-
tive contribution to λ (Table 1).

Full-size DOI: 10.7717/peerj.8018/fig-2

Figures 1–4 show the λ3, pλ2, qλ, and r orthotopes (respectively) in Eq. (13). Each
dimension in the orthotopes are scaled to the appropriate Aij values (as specified in Eq.
(11)) and to the λ that balances them.
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Figure 3 The trio of orthotopes representing the qλ term (Eq. (12)). Two dimensions of each orthotope
are specified by quadratic interactions of pairwise sets of vital rates, while the third dimension is specified
by λ. The light blue volume is a negative contribution to Eq. (12), but a positive contribution to λ (Table
1). Should management increase A12 or A21, the blue shaded volume will expand. The volumes absent of
color represent pairwise sets of matrix elements that have no effect on λ at the quadratic scale.

Full-size DOI: 10.7717/peerj.8018/fig-3

A 10% increase in the survival of early-breeding adults (A32) gives:

A=

 0 0.58 0.70
0.14 0 0
0 0.84 0.80

, (14)

which yields

λ3+ (−0.8)λ2+ (−0.081)λ+ (−0.0173)= 0, (15)

and a corresponding 1% increase in λ. This management strategy alters the characteristic
equation by (a) increasing the volume of the λ3 orthotope (Fig. 5), (b) rescaling the two
λ dimensions in the pλ2 orthotope to decrease its overall contribution, (c) rescaling the λ
dimensions in the trio of qλ sub-orthotopes to decrease their overall net contribution, and
by (d) decreasing the overall contribution of the r orthotope (Fig. 6).

Alternatively, a 10% increase in survival of late-breeding adults (A33) gives:

A=

 0 0.58 0.70
0.14 0 0
0 0.77 0.88

, (16)

which yields

λ3+ (−0.88)λ2+ (−0.081)λ+ (0.004)= 0, (17)

which equates to a 7% increase in λ. This change alters the characteristic equation by (a)
increasing the volume of the λ3 orthotope (Fig. 7), (b) decreasing the contribution of the
pλ2 orthotope (Fig. 8), (c) rescaling the λ dimensions in the trio of qλ sub-orthotopes to
decrease their overall net contribution, and by (d) increasing the overall contribution of
the r orthotope (Fig. 9).
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Figure 4 The orthotope of r (Eq. (12)). Negative (black) and positive (light blue) contributions exist
from cubic interactions among three-way sets of matrix elements (Table 1). Should managers increase A13,
A21, or A32, then the light blue volume (A13A21A32) will increase. However, an increase in A21 would si-
multaneously expand the black volume (A21A12A33), which functions to counterbalance the blue. The final
value of r is the net difference after each of these opposing effects have been tabulated, and it is only the
net value of r that drives changes in final value of λ. In the deer example, all other three-way sets of matrix
elements have no effect on the characteristic equation at the cubic scale.

Full-size DOI: 10.7717/peerj.8018/fig-4

Finally, a 10% simultaneous increase in survival of early- and late-breeding adults
(A32,A33) gives:

A=

 0 0.58 0.70
0.14 0 0
0 0.84 0.88

, (18)

λ3+ (−0.88)λ2+ (−0.081)λ+ (−0.0108)= 0, (19)

which also equates to a 7% increase in λ. The changes alter the characteristic equation by (a)
increasing the volume of the λ3 orthotope (Fig. 10), (b) decreasing the contribution of the
pλ2 orthotope, (c) rescaling the λ dimensions in the trio of qλ sub-orthotopes to decrease
their overall net contribution, and by (d) slightly decreasing the overall contribution of the
r orthotope (Fig. 11).
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Figure 5 The slight increase in the λ3 orthotope given the hypothetical 10% increase in A32. The inner
dark grey orthotope shows the volume of the unperturbed system, while the very subtle light grey slivers
(on the right and top edges) show the (miniscule) volumetric increase that arose from this 10% alteration
to A32.

Full-size DOI: 10.7717/peerj.8018/fig-5

Figure 6 The r orthotope given the hypothetical 10% increase in A32. The black and sky blue volumes
represent the volumes of the unperturbed system. The subtle blue sliver (at the top of the blue) shows
the increase in the A13A21A32 volume given the 10% increase in A32. The grey volume shows an upward
shift to A21A12A33, but the magnitude of the black volume remains unchanged. The overall increase in the
A13A21A32 volume, however, not only depended on the change to A32, but also on the situational values of
A21 and A13.

Full-size DOI: 10.7717/peerj.8018/fig-6
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Figure 7 The λ3 orthotope given the hypothetical 10% increase in A33. The inner dark grey orthotope
shows the volume of the unperturbed system, while the light grey slivers (at the edges) show the volumet-
ric increase that arose from the alteration. Comparison of this orthotope to Fig. 5 makes it clear that A33

has more influence on λ than A32.
Full-size DOI: 10.7717/peerj.8018/fig-7

Figure 8 The orthotope of pλ2 given the hypothetical 10% increase in A33. The inner sky blue ortho-
tope shows the volume of the unperturbed system, while the subtle blue slivers (at the top and right edges)
show the volumetric increase that arose from the alteration of A33. Notice that both the value of A33 and
the value of λ increased.

Full-size DOI: 10.7717/peerj.8018/fig-8
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Figure 9 The r orthotope given the hypothetical 10% increase in A33. The black and sky blue represent
the volumes in the unperturbed system. The grey sliver shows the increase in the A33A21A12 volume given
the 10% increase in A33. The A32A21A13 volume did not change. The overall increase in the A33A21A12 vol-
ume not only depended on the change to A33, but also on the situational values of A21 and A12.

Full-size DOI: 10.7717/peerj.8018/fig-9

DISCUSSION
The behavior of λ regularly defies intuition. But the linkage between a managerial action
and its effect on λ can become more transparent when cause and effect is thought of as a
two-step process. A targeted managerial change to an Aij first alters the configurations of
the p,q, and r orthotopes, then the value of λ (and the configuration of the λ3 orthotope)
adjusts to rebalance the overall equation to zero. In this two-step process, changes to the
Aijs always alter the configuration of the p,q, or r orthotopes, but only the net changes to
these orthotopes alter λ. In actuality, the response of λ happens instantaneously, but we
use this procedural metaphor to help readers of think more deeply about the linkage.

The mathematical configurations of Aijs in Eqs. (6)–(9) are governed by definitions in
linear algebra (Strang, 2016), yet the configurations of sums, differences, and products of
Aijs suggest that not all Aijs contribute equally to λ. Such asymmetries in the configurations
of Aijs suggest that targeted alterations to some Aij are more likely to produce net effects
than alterations to others. Indeed, traditional sensitivity analyses (in equation form) have
long exposed these differentials (Caswell, 2001). We suggest, however, that IsoPOPd may
be used by broader audiences to garner a deeper understanding of why this is so. For
example, the deer example illustrated that alterations to an Aii (that contributes to the p
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Figure 10 The λ3 orthotope given the hypothetical 10% increase in A32 and A33. The inner dark grey
orthotope shows the volume of the unperturbed system, while the light grey segments show the volumetric
increase that arose from the simultaneous alterations.

Full-size DOI: 10.7717/peerj.8018/fig-10

orthotope) had higher propensity to influence net changes in the characteristic equation
(and therefore λ) than the Aijs that contributes only to r . Calculations using traditional
sensitivity analysis for white-tailed deer corroborate this result; A33 has a higher influence
on λ than A32.

It might seem intuitive that a management strategy designed to improve survival of
all individuals would proportionally increase the growth rate. But we just showed that
in some life cycles, this intuition may be flawed. The deer demonstration revealed that
a management strategy designed to simultaneously increase survival in the 2nd and 3rd
stages is no better off than a management strategy designed to increased survival in the 3rd
stage only. Due to the asymmetries of the vital rates in Eq. (9), simultaneous modification
of A32 and A33 differentially altered the characteristic equation at the normal scale, the
quadratic scale, and produced two (opposing!) influences at the cubic scale, lending an
overall unintuitive (and non-linear) response in λ. Indeed, it was the counterbalancing of
the positive and negative expansions from A32 and A33 in the r orthotope that neutralized
any additive benefit of increasing A32 (Fig. 11). This seemingly peculiar result arose from
the life history of the deer, and may or may not extend to management in other species.
Afterall, sensitivity analysis is situational (De Kroon, Van Groenendael & Ehrlen, 2000).

It is natural to ponder the biological interpretations of p,q, and r , but such a discussion
is outside of the scope of this work. Rather, the scope of this demonstration is to provide a
general tool for non-specialized audiences to heuristically discover why the behavior of λ
can defy intuition, and how to leverage the mathematics to their benefit in their strategic
planning. Simply stated, management strategies that influence vital rates in the r orthotope
are not as influential on λ as management strategies that influence the p or q orthotopes. As
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Figure 11 The r orthotope given the hypothetical 10% increase in A32 and A33. The black and sky
blue represent the volumes in the unperturbed system. The subtle blue sliver shows the increase in the
A13A21A32 volume given the 10% increase in A32 and A33. The grey volume shows both the upward shift
and the increase in the A21A12A33 volume. The overall increase in the blue volume (A13A21A32) not only
depended on the change to A32, but also on the situational values of A21 and A13. As well, the overall
increase in the black volume (A21A12A33) depended on the change in A33 and on the situational values
of A21 and A12. Since both volumes increased, and they counteract each other, the net change in r was
negligible. Thus, any substantial change to the characteristic equation (and therefore λ) consequent to
the simultaneous increase in A32 and A33 would have had to have been governed by net changes in p or q.
Indeed, the alteration of p drove the response in λ to this targeted management scenario.

Full-size DOI: 10.7717/peerj.8018/fig-11

well, any alteration that counteracts another in magnitude and directionality will result in
unchanged net values, which in turn will fail to alter λ. Consideration of thesemathematical
relationships may aid managers in identifying the most efficient intervention strategies for
attaining their population goals.

In our demonstration and discussion, we have used the concept of vital rates and matrix
elements interchangeably. In the deer example, stage one individuals can die or advance
to stage two, stage two individuals can die or advance to stage three, and stage three
individuals can die or remain in stage three, so the probability of any transition (given
survival) is equal to one. However, in more complicated life histories, transitional matrix
elements (Aij where i= 2,3, and j = 1,2,3) are defined as the product between survival
and transition (Caswell, 2001). This definition becomes important when individuals can
transition through their life history in more ways than one. For example, in PMMs where
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A22 is non-zero, animals in stage two could (1) die, (2) survive and remain in stage two, or
(3) survive and mature into stage three. In this case, the probability of transition among
stages two and three must be incorporated into the values of both A22 and A32 (and not
just in A32 as we did in our example). Although the compound nature of transition and
survival are undoubtedly important in PMMs, we leave it to the user to properly calculate
each Aij for input in the IsoPOPd software.

CONCLUSION
Population matrix models are foundational in the study of ecology, population
dynamics, wildlife management, and conservation biology (Caswell, 2001), and sensitivity
investigations of the relationships between Aij and λ are not novel (see Salguero-Gómez et
al., 2014; Salguero-Gómez et al., 2016). However, it is our hope that the IsoPOPd software
illuminates to broader audiences the behavior of λ in the context of decision making in
population management, and how such knowledge can be used as leverage to achieve
conservation goals.
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Mathematical derivations 

Given a population matrix representing any 3-stage life history, where the vital rates are 

arbitrarily denoted 𝑎௜௝ for i = 1, 2, 3, and j = 1, 2, 3, and of the form: 

𝐋 = ൥

𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ

𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ

𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

൩,         (1S) 

then the characteristic equation is in the form (Beyer, 1978):  

det(𝐋 − 𝜆𝐈) = 0,          (2S) 

where 𝐈 is the 3 ×  3 identity matrix, and 𝜆 is an eigenvalue of 𝐋.  Equivalently,  

λଷ + 𝑝λଶ + 𝑞λ + 𝑟 = 0,         (3S) 

where 

𝑝 = (−𝑎ଵଵ −𝑎ଶଶ − 𝑎ଷଷ),         (4S) 

𝑞 = (𝑎ଵଵ𝑎ଶଶ +𝑎ଶଶ𝑎ଷଷ +𝑎ଵଵ𝑎ଷଷ −𝑎ଷଶ𝑎ଶଷ−𝑎ଶଵ𝑎ଵଶ −𝑎ଵଷ𝑎ଷଵ),     (5S) 

and 

𝑟 = (𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ −𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ−𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ−𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ).  (6S) 

We refer to 𝑝, 𝑞, and 𝑟 from eqs. 4S-6S as superparameters (e.g. Hanley & Dennis, 2019).  The 

roots of the characteristic equation are the eigenvalues of the matrix (Cull & Vogt, 1973).   

Let λ be a real number.  Rewriting, eq. 3S, we have: 

λଷ + (−𝑎ଵଵ – 𝑎ଶଶ − 𝑎ଷଷ)λଶ 

+(𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ − 𝑎ଷଶ𝑎ଶଷ−𝑎ଶଵ𝑎ଵଶ − 𝑎ଵଷ𝑎ଷଵ)λ 

+(𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ − 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ−𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ−𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ = 0.  (7S) 

Collecting positive terms on one side and negative terms on the other, we have: 

λଷ + (𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ)λ + 𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ = 

(𝑎ଵଵ + 𝑎ଶଶ + 𝑎ଷଷ)λଶ + (𝑎ଷଶ𝑎ଶଷ+𝑎ଶଵ𝑎ଵଶ + 𝑎ଵଷ𝑎ଷଵ)λ 

+𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ+𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ+𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ,       (8S) 

which leads to positive and negative contributions of the balance equation (see Table 1).  



 Now let λ be a complex number, where λ = 𝑔 + ℎ𝑖.  The characteristic equation for a 3-

stage population matrix model is then:   

(𝑔 + ℎ𝑖)ଷ + 𝑝(𝑔 + ℎ𝑖)ଶ + 𝑞(𝑔 + ℎ𝑖) + 𝑟 = 0,       (9S) 

Where p, q, and are as in eqs. 4S-6S.  Rewriting eqs. 3S, we have: 

(𝑔 + ℎ𝑖)ଷ + (−𝑎ଵଵ – 𝑎ଶଶ − 𝑎ଷଷ)(𝑔 + ℎ𝑖)ଶ 

+(𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ − 𝑎ଷଶ𝑎ଶଷ−𝑎ଶଵ𝑎ଵଶ − 𝑎ଵଷ𝑎ଷଵ)(𝑔 + ℎ𝑖) 

+(𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ − 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ−𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ−𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ = 0.  (10S) 

Expanding, we have: 

𝑔ଷ + 3𝑔ଶℎ𝑖 − 3𝑔ℎଶ − ℎଷ𝑖 

+(−𝑎ଵଵ – 𝑎ଶଶ − 𝑎ଷଷ)(𝑔ଶ + 2𝑔ℎ𝑖 − ℎଶ) 

+(𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ − 𝑎ଷଶ𝑎ଶଷ−𝑎ଶଵ𝑎ଵଶ − 𝑎ଵଷ𝑎ଷଵ)(𝑔 + ℎ𝑖) 

+(𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ − 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ−𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ−𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ = 0.  (11S) 

Further: 

𝑔ଷ + 3𝑔ଶℎ𝑖 − 3𝑔ℎଶ − ℎଷ𝑖 

−𝑎ଵଵ𝑔ଶ – 𝑎ଶଶ𝑔ଶ − 𝑎ଷଷ𝑔ଶ  − 𝑎ଵଵ2𝑔ℎ𝑖 – 𝑎ଶଶ2𝑔ℎ𝑖 − 𝑎ଷଷ2𝑔ℎ𝑖 + 𝑎ଵଵℎଶ +𝑎ଶଶℎଶ + 𝑎ଷଷℎଶ 

+𝑎ଵଵ𝑎ଶଶ𝑔 + 𝑎ଶଶ𝑎ଷଷ𝑔+𝑎ଵଵ𝑎ଷଷ𝑔 − 𝑎ଷଶ𝑎ଶଷ𝑔−𝑎ଶଵ𝑎ଵଶ𝑔 − 𝑎ଵଷ𝑎ଷଵ𝑔 

+𝑎ଵଵ𝑎ଶଶℎ𝑖 + 𝑎ଶଶ𝑎ଷଷℎ𝑖+𝑎ଵଵ𝑎ଷଷℎ𝑖 − 𝑎ଷଶ𝑎ଶଷℎ𝑖−𝑎ଶଵ𝑎ଵଶℎ𝑖 − 𝑎ଵଷ𝑎ଷଵℎ𝑖 

+𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ − 𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ−𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ−𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ = 0.  (12S) 

Collecting positive terms on one side and negative terms on the other, we have: 

𝑔ଷ + 3𝑔ଶℎ𝑖 + 𝑎ଵଵℎଶ +𝑎ଶଶℎଶ + 𝑎ଷଷℎଶ + 𝑎ଵଵ𝑎ଶଶ𝑔 + 𝑎ଶଶ𝑎ଷଷ𝑔+𝑎ଵଵ𝑎ଷଷ𝑔 

+𝑎ଵଵ𝑎ଶଶℎ𝑖 + 𝑎ଶଶ𝑎ଷଷℎ𝑖+𝑎ଵଵ𝑎ଷଷℎ𝑖 + 𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ 

= 3𝑔ℎଶ + ℎଷ𝑖 + 𝑎ଵଵ𝑔ଶ +𝑎ଶଶ𝑔ଶ + 𝑎ଷଷ𝑔ଶ + 𝑎ଵଵ2𝑔ℎ𝑖 +𝑎ଶଶ2𝑔ℎ𝑖 + 𝑎ଷଷ2𝑔ℎ𝑖  

+𝑎ଷଶ𝑎ଶଷ𝑔+𝑎ଶଵ𝑎ଵଶ𝑔 + 𝑎ଵଷ𝑎ଷଵ𝑔 + 𝑎ଷଶ𝑎ଶଷℎ𝑖+𝑎ଶଵ𝑎ଵଶℎ𝑖 + 𝑎ଵଷ𝑎ଷଵℎ𝑖 

+𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ+𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ+𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ.       (13S) 

Collecting real and imaginary components, we have: 

(𝑔ଷ + 𝑎ଵଵℎଶ +𝑎ଶଶℎଶ + 𝑎ଷଷℎଶ + 𝑎ଵଵ𝑎ଶଶ𝑔 + 𝑎ଶଶ𝑎ଷଷ𝑔+𝑎ଵଵ𝑎ଷଷ𝑔 + 𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ +

𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ)+(3𝑔ଶℎ+𝑎ଵଵ𝑎ଶଶℎ + 𝑎ଶଶ𝑎ଷଷℎ+𝑎ଵଵ𝑎ଷଷℎ) 

=(3𝑔ℎଶ + 𝑎ଵଵ𝑔ଶ +𝑎ଶଶ𝑔ଶ + 𝑎ଷଷ𝑔ଶ +𝑎ଷଶ𝑎ଶଷ𝑔+𝑎ଶଵ𝑎ଵଶ𝑔 + 𝑎ଵଷ𝑎ଷଵ𝑔 +

𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ+𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ+𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ)+(ℎଷ + 𝑎ଵଵ2𝑔ℎ +𝑎ଶଶ2𝑔ℎ + 𝑎ଷଷ2𝑔ℎ +

𝑎ଷଶ𝑎ଶଷℎ+𝑎ଶଵ𝑎ଵଶℎ + 𝑎ଵଷ𝑎ଷଵℎ)𝑖.        (14S) 

This implies that: 



𝑔ଷ + 𝑎ଵଵℎଶ +𝑎ଶଶℎଶ + 𝑎ଷଷℎଶ + 𝑎ଵଵ𝑎ଶଶ𝑔 + 𝑎ଶଶ𝑎ଷଷ𝑔+𝑎ଵଵ𝑎ଷଷ𝑔 

+𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ 

= 3𝑔ℎଶ + 𝑎ଵଵ𝑔ଶ +𝑎ଶଶ𝑔ଶ + 𝑎ଷଷ𝑔ଶ +𝑎ଷଶ𝑎ଶଷ𝑔+𝑎ଶଵ𝑎ଵଶ𝑔 + 𝑎ଵଷ𝑎ଷଵ𝑔 

+𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ+𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ+𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ,       (15S) 

and  

3𝑔ଶ+𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ  

= ℎଶ + 𝑎ଵଵ2𝑔 +𝑎ଶଶ2𝑔 + 𝑎ଷଷ2𝑔 + 𝑎ଷଶ𝑎ଶଷ+𝑎ଶଵ𝑎ଵଶ + 𝑎ଵଷ𝑎ଷଵ.    (16S) 

Equations 15S-16S leads to two sets of positive and negative contributions of the balance 

equation (see Tables S.1 and S.2). 

 

Components of the characteristic balance equation for an 

imaginary dominant eigenvalue 

Negative contribution for the real 

component (𝑔) 

Positive contribution for the real 

component (𝑔) 

(3𝑔)ℎଶ 𝑔ଷ 

(𝑎ଵଵ +𝑎ଶଶ + 𝑎ଷଷ)𝑔ଶ (𝑎ଵଵ + 𝑎ଶଶ + 𝑎ଷଷ)ℎଶ 

(𝑎ଷଶ𝑎ଶଷ+𝑎ଶଵ𝑎ଵଶ + 𝑎ଵଷ𝑎ଷଵ)𝑔 (𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ)𝑔 

(𝑎ଵଵ𝑎ଶଶ𝑎ଷଷ+𝑎ଶଵ𝑎ଵଷ𝑎ଷଶ+𝑎ଷଵ𝑎ଵଶ𝑎ଶଷ) (𝑎ଵଵ𝑎ଷଶ𝑎ଶଷ+𝑎ଵଶ𝑎ଶଵ𝑎ଷଷ + 𝑎ଷଵ𝑎ଵଷ𝑎ଶଶ) 

Table S.1. The positive and negative contributions to the real component of the balance equation 

for a complex dominant eigenvalue.  Here, 𝑔 is the term that must vary to balance these 

components to zero.    

 

Components of the characteristic balance equation for an 

imaginary dominant eigenvalue 

Negative contribution for the imaginary 

component (h) 

Positive contribution for the imaginary 

component (ℎ) 

ℎଶ 3𝑔ଶ 

(𝑎ଵଵ +𝑎ଶଶ + 𝑎ଷଷ)2𝑔 (𝑎ଵଵ𝑎ଶଶ + 𝑎ଶଶ𝑎ଷଷ+𝑎ଵଵ𝑎ଷଷ) 

(𝑎ଷଶ𝑎ଶଷ+𝑎ଶଵ𝑎ଵଶ + 𝑎ଵଷ𝑎ଷଵ)𝑔  



Table. S.2.  The positive and negative contributions to the imaginary component of the balance 

equation for a complex dominant eigenvalue.  Here, ℎ is the term that must vary to balance these 

components to zero.   


