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ABSTRACT. This paper develops a unified way to describe the various
generalized discrete-time nonlinear dynamical models with density depen-
dence, Allee effects, and parasitoids. We show how the kappa function can
be used to describe the probabilities involved in intra- or interspecific encoun-
ters, namely, (i) the probability of surviving to the next generation in the
absence of parasitoids or Allee effects, (ii) the encounter probability associ-
ated with Allee effects, and (iii) the probability of escaping parasitism in the
presence of parasitoids. Having introduced a phenomenological framework
of modeling via the kappa function, we then provide a realistic mechanism
through stochastic encounters, responsible for generating the kappa function
to any of the three involved probabilities. The unified modeling through the
kappa function yields insights into how abundances influence species interac-
tions. It is now straightforward to use this unified modeling to analyze and
investigate its consequences in species dynamics.

KEY WORDS: Population dynamics, kappa distribution, Allee effect,
host-parasitoid models, discrete-time models.

1. Introduction. Discrete-time models of ecological populations with their
rich dynamical structure and complexity have been of considerable mathemati-
cal and ecological interest for over a half a century. For biological populations with
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nonoverlapping generations, population growth takes place in discrete time steps
and is commonly described by difference equations (Elaydi [2005, 2008]). Moreover,
discrete-time population models have proved highly effective for analyzing time se-
ries data arising from experimental and observational studies (Dennis and Taper
[1994], Ives et al. [2003], Costantino et al. [2005]).

This paper proposes a unified framework for modeling populations via difference
equations. This includes modeling density dependence, parasitism, and Allee effects,
and focuses on the probability mechanisms involved. Unified approaches to popula-
tion modeling have been attempted by many authors (May [1978], May et al. [1981],
Royama [1992], Mills and Getz [1996], Brannstrom and Sumpter [2005]). Such ap-
proaches can lead to deeper insights into modeling, the relationships among various
models, how individual actions affect population dynamics, and theoretical devel-
opments about species abundance distributions (McGill et al. [2007]). In one gen-
eralized approach to single-species modeling, Brannstrom and Sumpter [2005] were
able to derive many of the models in the ecology literature by introducing spatial
clustering of individuals in the form of a negative binomial distribution. Following
this approach, single-species models are represented by the difference equation

(1a) Hyyy = Hy - g(Hy), g(Hy) = u(Hy) -r(Hy) - I(Hy),

where H; is the abundance of the population at generation or time period ¢, and
g(H;) is the net individual fitness. (The abundance represents either the size or den-
sity, and hereafter will be called size.) Here the fitness is modeled as the product of
three functions, the probability of surviving to the next generation when affected
only by intraspecific competition, represented by a monotonically decreasing func-
tion u(H;), the rate of reproduction, r(H;), that is the number of offspring that
survives to the next generation, and the probability of avoiding reproduction fail-
ure due to Allee effects represented by a monotonically increasing function I(H;).
In the presence of a parasitoid, the standard modeling of a host-parasitoid system
involves

(1b) Hypy = Hy - g(Hy) - p(Py), Py = Hp - o(Hyp) - [1—p(P)],

where p(P;) is the probability of the host to escape from parasitism; ¢(H;) is the
parasitoid multiplicity, i.e., the eggs laid by a parasitoid on a single host that
survive. Our focus will be on the probability functions u(H;), I(H;), and p(P;), and
we will here assume that r(H;) and ¢(H;) are constant. Note that the probability
of host survival in the absence of the parasitoid does not depend on the parasitoid
size, while the probability of the host of escaping parasitism does not depend on
the host size.

The forms of u(x) and p(z) are commonly given by an exponential or a rational
function. These functions were generalized by many authors including Hassel et al.
[1976] and Brannstrom and Sumpter [2005]. Most of these models may fall under
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the framework of the mono-parametrical kappa function (Livadiotis and McComas
[2009, 2013], Livadiotis [2015a]),

) Flas ) = <1+i-x> " e (0.00).

Note that = may represent the size N of a population or a function ®(N) of the
size. The governing parameter k is an inverse measure of the degree of aggregation
or clustering in the items being encountered. When « tends to zero, the probability
(2) approaches the functional form 1/(1 + z) of the Beverton-Holt’s model [1957]
characterized by extreme aggregation; as will be explained later, the variable x can
be a physically meaningful function of &, e.g., z—a-x/(k+1). On the other end,
when £ tends to infinity, we have the exponential form e * of the Ricker’s model
[1957] that has no aggregation.

For multi-species models, it was May [1978, 1981], who initiated the use of kappa
function to modify the Nicholson—Bailey host-parasitoid model. If P is the size of
the parasite, then the probability of the host escaping parasitism is given by (2)
with x = v - P, where « is the attack rate of the parasitoid, and & is the aggre-
gate parameter of the parasitoid. In addition to parasitism, and individual fitness,
the framework of kappa function may include the Allee effect phenomenon as was
pointed out by Johansson and Sumpter [2003]. This may be done by requiring, for
example, that two or more individuals are needed per resource site for offspring to
be produced.

The above formulations lie in the theoretical framework of the kappa function used
for describing the particle energy distribution of various systems with inter-particle
interactions, such as, the space plasmas (e.g., Livadiotis [2015a], and references
therein). The use of the kappa function has become increasingly widespread across
physics and other disciplines, with the number of papers following, remarkably,
an exponential growth (Livadiotis [2015b]). The kappa function was empirically
derived half a century ago as a suitable fitting-model describing observations of
space and other plasma particle populations (Olbert [1968], Vasyliunas [1968]). A
breakthrough in the field came with the connection of the kappa function with the
statistical framework of nonextensive statistical mechanics (Tsallis [2009]), that is, a
generalization of the classical statistical mechanics of Boltzmann-Gibbs (Livadiotis
and McComas [2009]). There was an outburst of publications studying and applying
the kappa function and its associated statistical mechanics in a variety of disciplines.
Few examples are the following: in sociology-sociometry, e.g., the internet (Abe and
Suzuki [2003]), in citation networks of scientific papers (Tsallis and De Albuquerque
[2000]), urban agglomeration (Malacarne et al. [2001]); in linguistics (Montemurro
[2001]); in economics (Borland [2002]); in biochemistry (Andricioaei and Straub
[1996]); in applied statistics (Habeck et al. [2005]); in nonlinear dynamics (Borges
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et al. [2002]); in physical chemistry (Livadiotis [2009]); space physics (Livadiotis et
al. [2012]).

The purpose of this paper is to develop a general modeling and formulations
in multi-species competition models with Allee effects and parasitoids using the
framework of kappa function. This can be used to derive various probabilities related
to this modeling, namely, the probabilities (i) of surviving to the next generation
in the absence of parasitoids or Allee effects, (ii) of avoiding reproduction failure
due to Allee effects, and (iii) of escaping parasitism in the presence of parasitoids.

2. Materials and methods.

2.1. Modeling framework via the kappa function. Let the kappa function
of some variable z (2), which represents the size of species N, or it may be given
by some simple function of N, x = ®(N) (and of other parameters characteristic of
the model). The governing parameter of the kappa function is the kappa index k.
Different values of x correspond to different “states” of the system, ranking from
the state called “Equilibrium” when x — oo, where the function is reduced to the
exponential, to the furthest state from Equilibrium, the Anti-Equilibrium, when
k — 0, where the kappa function has a rational or power-law asymptotic behavior.
The Equilibrium/Anti-Equilibrium terms are borrowed from the usage of kappa
function in statistical mechanics (e.g., Livadiotis [2015a]).

Here we examine the probabilities of the host to survive among its own species
individuals, to escape parasitism, and to avoid Allee effects, and connect them with
the kappa function (Figure 1).

Simple population models of one-species (in the absence of parasitoids or Allee
effects) have similar behavior. Let the standard modeling H; 1 /H; = u(H;). Now
the involved probability is u(H;), that is the probability of an individual to survive
to the next generation. The two basic models of the survival probability u(x) are
those of Ricker [1954] and Beverton—Holt [1957], respectively, given by the functions,

(3) u(z) =e “,and u(z) = 1/(1 + z), withe = ¢(R) - (H;/K — 1),

where R is a characteristic rate per generation (intrinsic growth rate for the Ricker
model and proliferation rate for the Beverton—Holt model); ¢ is constant related
to the characteristic rate, where ¢(R) = R for the Ricker model and ¢(R) = 1-R™!
for the Beverton—-Holt model; K is the carrying capacity. Both models are limiting
cases of the Hassell et al. model [1976], and they can be written in the form

@) u(z) = (1 + % m) Cithe = e (R) - (i? - 1) el = — RZ}E;— T
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FIGURE 1. The probabilities of the host species of (a) surviving, (b) escaping parasitism,
and (c) avoiding Allee effects, and their connection with the framework of the kappa function.
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The Ricker model is obtained when ¥ — oo and the Beverton—Holt model when
k — 0. The model is developed so that K to be the carrying capacity for all the
values of k.

In the general host-parasitoid system, the probability that a host escapes from
parasitism can be described by an exponential (Nicholson and Bailey [1935]) and a
rational (Bellows [1981]) models,

5) p(x) = e, and p(x) = 1/(1 + x) withz = P,

where v is the searching efficiency of the parasitoid. These models constitute the
two extreme cases of May’s general model

1 el K
(6) p(m)z(l—i—ﬁwz:) , WltthmJy-Pt.

The Nicholson and Bailey model is obtained for K — oo and the Bellows model for
k — 0 (Livadiotis et al. [2015]). (The exponent — (k+1), instead of —«, is preferred
in order to be aligned with the standard kappa function, e.g., Livadiotis [2015a]).

Next we use the kappa function to describe in a unified way the primary models

of the Allee effect. A standard method of modeling species suffering from strong
Allee effect is via the equation

(7) u(Hy) = uo(Hy) - I(Hy),

where the function ug(H) is the host fitness in the absence of an Allee effect; I(H)
represents the Allee effect on the fitness of the population (e.g., Dennis [1989],
Scheuring [1999], Livadiotis and Elaydi [2012]) and it is given by the probabilities
of (a) escaping predation by a predator with a saturating functional response, or
(b) finding a mate:

_m
l+s-x

ST

= — withz=H,
1+s-x’W1 T .

(8)  (@I) =exp (— ) () 1(2)

where m represents the predation intensity; the interpretation of s depends on the
model, i.e., for (8a) sis proportional to the “handling time,” which is the duration of
the capture and eating phase, and for (8b) s is the individual’s searching efficiency.
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Both the above primary Allee effect models (8) are limiting cases of the following
kappa function

1 el m
9 Iz)=(1+—" ithe = 0.
(9) (x) ( +H x) , withz 14_5(14_771/%8).]%m>

This reduces to the predator saturation model (8a) for k — oo and the mate
limitation model (8b) for k — 0. The scheme in Figure 1 shows the unifying role of
the kappa function in all three probabilities described above.

2.2. Origin of the kappa function in population dynamics. Having in-
troduced a phenomenological framework for modeling the probabilities involved in
the fitness, we now may ask if there exists any realistic mechanism that lies on
the previous abstract analysis. Indeed, we show that stochastic encounters can act
as a mechanism responsible for generating a kappa function to any of the three
probabilities of Figure 1.

In dynamical models of density-dependent competing populations, host-parasite
systems, and populations experiencing Allee effects, there are often terms in the
mathematical expressions that represent probabilities or frequencies of encounters.
Some of the more popular terms arise from formulating encounters as a simple
discrete stochastic birth process.

Suppose Y () is the number of encounters that an animal has had with the objects
of search or avoidance (food items, prey, co-members of its own species, predators),
starting from an initial time ¢ = 0. In some versions, ¢ is not necessarily time but
could be the searched area. Additions to the count Y (¢) in a small interval At
are governed by a function, A,, commonly called the "birth rate” although in the
present context encounters are not being born as such. Specifically, the probability
of an additional encounter in At, given the value of Y (¢) is y, is assumed to be

(10) PY(t+At)=y+1 | Y(t) =y] =\ At

With the additional assumption that the probability of two or more encounters in
At is negligible, equation (10) leads to a system of differential equations for the prob-
abilities p, (t) = P[Y (¢t) =y], y =0, 1, ...; (these differential equations are listed
in most books on stochastic processes, e.g., Bailey [1964]). With the initial condi-
tion that Y(0) = 0 (or py(0) = 1), the equations can be solved recursively to yield

¢
(11a) py(t) = e’kyt)\y,l / ety Tpy—1(T)dr,

0
starting from

(11b) po(t) = e Ml
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Different forms for the birth rate function A, correspond to different temporal or
spatial patterns in encounters (e.g., Abbott [2011]). For instance, a simple model
of temporal or spatial aggregation takes the birth rate to be

(12a) Ay =X +7-Y,

where )y and ~y are positive quantities; the more encounters an animal has had, the
more likely it is the animal will have another encounter.

A main point is that the zero probability (11b) has the same exponential decay
form for any birth rate function, the dependence being only on the birth rate A\q at
y = 0 encounters. The zero probability is the probability of no encounters in time
t and plays an important role when encounter avoidance or failure has dynamical
consequences. Survival (avoiding predation or cannibalism), mating (finding con-
specifics), and feeding (finding food, prey, or hosts) are potential processes modeled
with (11b). In particular, Ay is a sort of density, or average number of first encoun-
ters over one unit of time or space. We expect Ay to be roughly proportional to N,
the average density of the objects being encountered,

(12b) )\0 = ﬁNO’I“ )\() = ﬁq)(N),

where ®(N) is some monotonic function of the size. For example, for the three
probabilities in Figure 1 we have ®(N) = (A + B - N)*! where A and B are some
constants depending on the model parameters; exponent +1 corresponds to the
probabilities of surviving in its own species (Figure 1a) and of escaping parasitism
(Figure 1b), while exponent —1 corresponds to the probability of avoiding Allee
effects (Figure 1c).

In terms of N, the probability of zero encounters in a unit of time/space becomes

(13a) P(zero encounters) = e 7V,

The complement probability gives the chance of one or more encounters:
(13b) P(non — zero encounters) = 1 — e "V,

In population dynamics, the exponential function in (13a,b) is used as encounter
terms in the Thompson [1929] and Nicholson and Bailey [1935] host-parasitoid
models, the Ricker [1954] model of stock-recruitment, and the Larvae-Pupae-Adults
model of Dennis et al. [1995], among others.
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Search (or avoidance) is likely to be a heterogeneous process. Detection conditions,
detection abilities, and mobilities or escape abilities will vary from day to day and
place to place. Heterogeneity can be modeled by allowing the detection parameter
0, called “searchability,” to have a continuous probability distribution of its own on
the positive real line. In this formulation, (13a) represents a conditional probability,
for a given value of § (after it has been drawn from its probability distribution).
If the probability density function of § is denoted by ¢(3), then the unconditional
probability of zero encounters is given by the Laplace transform of ¢(83),

(14) P(zero encounters) = /OQ e (I)(N)¢(ﬂ) dg.

0

The searchability distribution function, ¢(8), can be identified by the Gamma
distribution with shape x and scale given by the mean (), that is, the reduced chi-
square distribution for noninteger d-degrees of freedom and average searchability

(8),

(1) D)= L (5 (B)2 - exp (—4d-5) (B (5))

N[ =

Then, the integration in equation (14) gives the kappa function for x = $d and

z = (B) - ®(N),

(16) p(a) = (1 + % x) o

The expression p(x) (the kappa function) here arises as the zero probability re-
sulting from “mixing” a gamma distribution with the zero probability of a birth
process encounter distribution such as a Poisson distribution in order to account
for heterogeneity of encounters among individuals. The above stochastic mecha-
nism of heterogeneity responsible for generating the kappa function has been used
in statistical physics (under the term “superstatistics”), with 8 having the role of
the inverse temperature (e.g., Beck [2001], Beck and Cohen [2003], Tsallis [2009];
the mechanism has been also applied to space physics in Schwadron et al. [2010];
evidence of the connection of D(5) with gamma distribution can be found in Li-
vadiotis [2015b]). The mechanism of mixing a gamma distribution with a Poisson
distribution to get a negative binomial distribution has been known in statistics for
almost a century (Greenwood and Yule [1920]) and has been well known in ecology
for much of that time (e.g., Fisher et al. [1943], Pielou [1969], Chave [2004], Martin
et al. [2005]).
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Probabilities of a species to

(a) - survive

-x-1 , \
o (E ] R [(H A3
11(H,)={1+(1—R )‘[7—1]} “(H')_|:1+K+R3(R—l)'l (K IH u(H)=e
(b) - escape parasitism
-x-1
p()=(1+y-P)" p(m=[1+7'—P’] p(R)=e""
K+l
(c)- avoid Allee effects »
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towards Anti-Equilibrium K towards Equilibrium

FIGURE 2. The probabilities of a species (a) to survive among its own species individuals,
u(H,), (b) to escape parasitism, p(H;), and (c¢) to avoid reproduction failure due to Allee
effects, I(H;), were considered and generalized in this paper using the kappa function. (a) As
the kappa index decreases approaching x — 0 (noted as Anti-Equilibrium), then the survival
probability reduces to Beverton-Holt model, while as the kappa index increases approaching
k — 00 (noted as Equilibrium), the survival probability reduces to the Ricker model; (b) the
probability of avoiding Allee effects reduces correspondingly to “predator saturation” when
k — 0 and “mate limitation” when xk — oo; (¢) finally, the probability of escaping parasitism
reduces correspondingly to the Bellows model when x — 0, and Nicholson—Bailey model when
K — 00.

3. Results. We provide the final modeling of population dynamics, where the
kappa function is involved in the formalism of the probabilities of the host to survive,
to escape parasitism, and to avoid Allee effects (Figure 2).

(i) Model to describe the dynamics of one species:

— without Allee effects

R H, )}1
17 H o =r-H |1+ B
(17a) t+1 =71ty [ m+R2(R*1)71 <K

— with Allee effects

R H, el
Hyi=r-H |1+ Y e A |
=t [ e ()

(17b) '[1 MG T{:/n) : HJ o
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— with Allee effects and a parasitoid

R H, el
Hyyi=r-H - |1+ Y
o= [ (1))

' {1 LG T{s/ﬁ) . Hj o

. P —Kk—1
(+355)
k41
")/R‘ —k—1
17 P.i1=¢c H - -|1—1(1 ' .
(17¢) 1 =< - Hy l (+I{+1> ]

It is likely that the kappa indices are different for the three probabilities; then, we
have the model,

R H, —r-l
Hyyi=r-H - |1+ B |
=ttt — b ()]

.[1+ m/ ks ]_&2_1
1+ s(1+m/ke)- H

. P —rg—1
(1+355)
kg + 1

. 7/{371
(17d) BH:g.Ht-[l—(H”Pt) 1

Ky +1

Notes: (i) The parameter K coincides exactly to the carrying capacity only when r
=1 and in the absence of Allee effects (m = 0 or s = 0). (ii) Certainly, not all models
are described by the modeling formulations presented in this paper. An example is
the one-species theta Ricker model u(z) = exp{r[l — (z/K)’]} (Berryman [1999]).

4. Discussion. This paper presented a unified approach to modeling the pop-
ulation dynamics of biological species, developing a general formulation of the
discrete-time nonlinear models with Allee effects and parasitoids. One significant
effort of this theoretical analysis is the usage of the kappa function to model the
probabilities involved, namely, (i) of surviving to the next generation in the ab-
sence of parasitoids or Allee effects, (ii) of avoiding reproduction failure due to
Allee effects, and (iii) of escaping parasitism in the presence of parasitoids. The two
basic models of each of these probabilities are those described by the exponential
and rational function. The kappa function deforms these two extremes in a whole
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Allee Effect (b)
2 : HE
-1 i S
%10 ~4.54 <k <o
= STRONG E /
8 Allee Effect H
= 0 \\,} ~0.86 < It <~454 |
210 [Gighal :
S Extinction
1 . 0 <K <~0.86
110 -3 - -1 : 0 1
o 10 1 02 10 .10 10
A(r) <> K(x)
Allee Point Carrying Capacity

FIGURE 3. Variation of the kappa index and its influence on the Allee effect. (a) The fitness
H,.,/H, is depicted in terms of H;, and includes the probabilities of surviving in its own
species and of avoiding Allee effects, in the absence of a parasitoid. The graph illustrates the
transition of weak Allee effect, to strong Allee effect, and finally to global extinction (on a
semi-log scale). (b) The graph shows the dependence of the carrying capacity (red) and Allee
point (blue) as a function of the kappa index (on a log-log scale). (Notes: K =1,y =0, r =
1, R=27, m=2 s=3,and K = RKy).

“spectrum” of different models, depending on the value of the governing parameter,
that is, the kappa index.

In Figure 3, the fitness H;,;/H; is depicted in terms of H;, and includes the
probabilities of surviving and avoiding Allee effects, as given by equation (17b), in
the absence of a parasitoid (v = 0). For the illustrated example, the reproduction
rate is ignored (r = 1), and the carrying capacity in the absence of Allee effect is
taken fixed to K = 1; the rest of the parameters are R = 2.7, m = 2, s = 3, and
the plots are shown for various values of the kappa index x (k1 = k2), spanning the
whole interval from K — 0 to K — .

We observe that a variation of the kappa index causes a transition from weak
to strong Allee effect, and finally, to global extinction. In particular, we find that
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the carrying capacity decreases as the kappa index increases. On the other hand,
it is well known that the carrying capacity is an inverse measure of the strength
of the Allee effect. Therefore, the Allee effect becomes stronger as the kappa index
decreases. The transition from the weak to the strong Allee effect occurs for a certain
kappa index that depends on the values of the other parameters, that is, k~4.54 for
the illustrated example. For even smaller kappa indices, the Allee point (threshold
of strong Allee effect) and the carrying capacity are getting closer and become equal
when £~0.86. This limiting value of kappa index, which also depends on the values
of the parameters, indicates the strongest Allee effect that can be described through
the model (17b). Even smaller kappa indices lead to a global extinction of the
species. This method imposes a powerful optimization helpful in species dynamics
modeling. Future models should take into account the mathematical restrictions
imposed by the kappa function (Livadiotis and McComas [2010]), in order to obtain
physically meaningful species systems.

The modeling of population dynamics under the unified scheme of the kappa
function (Figure 3) creates new connections between the species dynamics and the
discipline of statistical mechanics, and specifically, to the framework of nonexten-
sive statistical mechanics. It is now straightforward to use the unified modeling
through the kappa function and analyze and investigate its consequences in species
dynamics. Finally, the presented approach can lead to deeper insights into the con-
nection of the kappa function with the species abundance distributions and their
statistical mechanics.
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